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STATISTICAL DESCRIPTION OF THE RADIATIVE STRENGTH FUNCTIONS
V.A. Plujko, S.N.Ezhov', A.S.Mikulyak'
! Taras Shevchenko University, Kiev, Ukraine

A closed-form thermodynamic pole approach is developed for average description of the El
radiative strength functions using the microcanonical ensemble for initial states. A semiclassical
description of the collective excitation damping in the method is based on modern physical notion on the
relaxation processes in Fermi systems. It is shown that the model is able to cover a relatively wide energy
interval, ranging from zeroth gamma-ray energy to values above GDR peak energy. It gives rather accurate
means of simultaneous description of the y-decay and photoabsorption strength functions in the medium
and heavy nuclei. For gamma-ray energies near neutron binding energies the calculations within the
proposed model describe experimental data somewhat better for heavy nuclei with A >150 as compared to
other closed-form approaches.

1. Introduction

Gamma-emission is one of the most universal channel of the nuclear decay, because it
generally may attend any nuclear reaction. This process as well as absorption of the gamma-rays
and electron-positron decay are described in the many-body systems by the radiative strength
functions [1 - 3]. These functions are important for the study of the nuclear structure models,
v-decay mechanisms, deformation and fluctuation of the nuclear shape, energies and widths of the
collective excitations [4 - 6, 8, 9]. Besides this fundamental importance from a theoretical point of
view, the strength functions are necessary to generate the data for the energy and non-energy
applications. It is critically important to have a simple closed-form expression for the y-ray strength
function because in most cases this function is an auxiliary quantity used in calculations of different
nuclear characteristics and processes. The theory-based approaches for y-strength are preferred over
the empirical ones to improve the reliability and accuracy of such calculationsand to understand the
physical sense of used parameters.

According to Brink hypothesis [10, 11], the Lorentzian line shape with the energy-
independent width (SLO model) is widely used for calculations of the dipole E1 radiative strength.
This approach is most appropriate simple method for the description of the photoabsorption data on
medium and heavy nuclei [12 — 14]. The situation is more complicated in the case of the gamma-
emission. The SLO model strongly underestimates the gamma-ray spectra at low energies
gy S1 MeV [15, 16]. A global description of the gamma-spectra by the Lorentzian can be obtained

rather satisfactorilyin the range 1<g, <8 MeV but with use of the giant dipole resonance (GDR)

parameters which are different from those based on photoabsorption data. On the whole, SLO
approach overestimates the integral experimental data (the capture cross sections, the average
radiative widths) in heavy nuclei [14 - 21]. The models for description of the El strengths at low
energies g, were proposed in refs. [22, 23]. An enhanced generalized Lorentzian model (EGLO) was
used and analyzed in refs.[24, 25] for a unified description of the low energy and integral data. The
EGLO radiative strength function consists of two components (for spherical nuclei): a Lorentzian

with the energy and temperature dependent width rk(gT,T) and finite value term from [22]

corresponding to zero value of y-ray energy. An empirical expression for width [ (g}, ,T) was used

with two additional parameters. The dependence of the parameters on mass number was obtained to
fit EGLO calculations to the experimental data. Nowadays the EGLO method is recommended by
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the JAEA [25] as the best practical model for calculation of the dipole gamma-ray strength function

when the experimental data are unavailable.

It should be noted that the SLO and EGLO expressions for the gamma-decay strength
function of heated nuclei are in fact the parametrizations of the experimental data, namely:

1. these expressions are not consistent with general relation between strength function and the
imaginary part of the response function of the heated nuclei (see [26 - 28] and Sect.2);

2. the EGLO damping width 'y has the empirical dependences on y-energy and temperature T. It is
similar to the one of the zero sound damping in the infinite fermi- liquid when the collisional
(two-body) dissipation is taken into account only. It is well known that an important
contribution to the total width in heavy nuclei is given by the fragmentation (one-body) width
which determines a redistribution of the particle-hole excitations near of the collective state [29
- 31]. The latter component of the width is almost independent of the nuclear temperature. The
width of the SLO model can be identified with this fragmentation component.

The statistical description of the average y-decay strength of excited states is presented
below using the microcanonical ensemble for initial states. The contributions to the relaxation
width resulting from the both interparticle collisions with retardation effects and fragmentation are
taken into account in a semiclassical way. The dependences of the y-decay and photoabsorption
strength functions on the initial excitation energy, the gamma-ray energy and mass number are
investigated within the thermodynamic pole approximation (TPA method). The TPA calculations
are compared with those ones within EGLO, SLO models and with the experimental data. It is
shown that the TPA model is able to cover a relatively wide energy interval, ranging from zeroth
gamma-ray energy to values above GDR peak energy. It gives rather accurate method of
simultaneous description of the y-decay and photoabsorption strength functions in the medium and

heavy nuclei.

2. Gamma-ray strength functions in heated nuclei

We shall consider the radiative strength function averaged over spins of initial states for y-
emission of the electric type with the energy €, and multipolarity A. The general expression for this
function can be obtained from the relation for the average radiative width d]-_‘)\.,-;de'}f per unit of the

y-ray energy interval [32]. Within statistical mechanics the width dr'y/ de is defined in standard

way as the quantity averaged over states with slightly different values of the total initial energy E
and numbers of protons Z and neutrons N

dev 5 M A Az, aN,p N 5 g AUZN)

where N =Q(U,Z,N)AEAZAN s the total number of initial states; Q(U,Z,N) is the density of

states; U=E-Ej is the initial excitation energy; E.q is the ground state energy. The quantities ] and M
are the spin of initial states and its projection on the Z axis, respectively; AE, AZ, AN are the small-
scale intervals of the dispersion in values of the energy, numbers of protons and neutrons near the
average values E, Z, N.

The quantity Pi(e,) =dx (g,{)-B%})-S(E—Ef—gY) is the y-transition probability with the

energy €, from an initial state i to the final state f; d; (gy) = (gv__.«-"hc)n*-lSn (k + 1)7L (2?”1)2’ et



STATISTICAL DESCRIPTION

2
is the reduced transition probability with the multipole

Bh= X [JrMeEdQuiMiEi)
Mf,H
operator Qy, for EA radiation, Q;, = AT (l)r% qu(rk), The quantities e, (X) = e(—l)k Z/A*
k

and ¢, (1) =e((A~-l):IL + (~I))L (z- 1)):.,""A"are the effective kinematic charge of the neutrons and

protons in nucleus, respectively.
Eq.1 can be represented in the following form

dry/de, =(Dle,)) /U, Z,N) )

Here, Q(U,Z,N)=Y (U, Z,N,J)is the total density of the initial states; the symbol <..>denotes

J
an average over the energies and numbers of the protons and neutrons with the unit weight

functions in the intervals AE, AZ and AN, respectively

Dley)=di. ) Y 8(E - Ey)-8(N - N1) -5z - 21)-x
N1,z Mo, Mt v 3)

[(re M Elex(JMEXZS(E “Ey-ey-1(N-NI)-y,(z-2)

where Q, = Z QM.L . The identical changing the arguments is made in the 3-function depending on

23
energy. The additional constants y;, defined below fix the numbers of the protons and neutrons.

In the region of high excitation energies being discussed the density of states in the intervals
AE, AZ, AN is almost constant. Therefore, we can assume that the D varies a little and (D) = D.In

this case the quantity ]_"k(gy,T) = D/Q coincides with the width of the y- decay of states of the

microcanonical ensemble with the given constants of motion E, Z and N. Using the integral
representation of the 3-functions

8(x) = 2; Eeit" dt 4)

and completeness relation for wave functions one obtains

+0 =

D(Sy) . ‘—l? _L dot - do- d0t3" exp(ﬂ.sU —uN-a; Z) : Z({aj}) : r({uj}!gy) . (5)

Here, Z({a j})=Sp(cxp(- BH )) is the partition function of the grand canonical ensemble

M A

characterized by three constants o, 0, p=a3; H =H-y,N-y,Z, v j=c¢jf,-"'|3, H is the nuclear
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Hamiltonian and N, Z are the operators of the neutron and proton numbers. The quantity
f({QJ},gY) is the mean width per unit energy of the y-decay of the states of the canonical

ensemble with the parameters {q }-}

o= 21 o). 0=t 0
where
1o (fosh o) - 517; ;: dt-Sp(p(H ) Q4 (0)Q; (1)) exp(iot) ™

is the spectral intensity for the expectation value of the product Q, (0) Q; (t) the multipole operator
Q, (t) in the Heisenberg representation Q, (t) = exp(itH h) Q, exp(u itH h) , Q=Q; (0) i.e. the
time-depended correlation function for the operator Q,; (t) The canonical average Sp(p(H ) ; ) is

taken over the Gibbs ensemble with the density matrix p(H ) = exp(— BH )Z({OL J})

Taking into account the fluctuation- dissipative relation between the spectral density of
nonsymmetrized correlation function and response function [33, 34], Eq.(6) can be written as

fosher) = or-{aifexal-Be:) ®

where

oo )= 281 o Cholenpnn) 28 ol o)

i

The quantity , is the linear response function given by

% (0 fou}) = Zep (1) 18P (0, fou)) + Nea (M) 187 (0, {oui})

A CRIE Sp(r"EYiu (r)ank] qu (1) (10)

where §ny (t) is the change of the single-particle density matrix nj induced by the external field
Vi = d, (t) ex (k) *E Yiu (r) Ay (t) =q, exp(— i(c) + in)t), n—>+0, q,<<1 for protons (k=p)
n

and neutrons (k=n).
The integral in Eq.(5) can be evaluated by means of the saddle- point method. The

parameters o; of the saddle point are found from the condition of an extremum of the logarithm of

the integrand. They are the solutions of the equations

10
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a8y ({ay}) /oo =0, k=1+3 (11)
with
Sy ({Ct,j})z In Z({O’,j})“ a1N~a22+a3U+ lnl:({ogj},g},). (12)

Next it is assumed that the dependence of the function s, on the saddle point parameters {oc j} is

more smooth as that of the partition function Z( {a J}) , hamely,
" Ins/6"af <<|0"InZ/5" o1, n=12. (13)

This .assumption is in agreement with many investigations of the linear response function properties
in medium and heavy heated nuclei (see, for example xefs. [27, 28, 35]. One finally obtains' for the

average radiative width [ (g,{) :

2
d QU-¢,,ZN
dr" : (h) o (ev’Tf)'—gg(i;%N)—) (14
where
2
() s} Im o1y
G?L(Ey:Tf)— ( Y ] 5 I—exp(— = Tr) (15)

Here, for simplicity, the designations a dependence of the functions s and % on the parameters g
and (, is not indicated in Eq.(14) and below. The quantity Q(Uf, £ N) is the total density of the
final states with the energy Us=U - gy and the temperature Ty =,

A(Ur Z,N) = exp{se{o] ) 20" detan) (16)
where det(am) is the determinant of the matrix with the elements

ak = @2Sf_-’6(xk6a| k,l=1+3 (17)

The parameters ;,a2,03=1/B=1/T; are the solutions of equations of the thermodynamical state
in final nucleus, i.e. they are the solutions of the Eq. [11] with the entropy of final states

Se({ouf) =8y ({ash) = T (fos).e0) = {fay}) - N =022 a5 U

instead of the function Sy

! Note that the expression for the average gamma-width, with use of the microcanonical distribution and an assumption
on a weak dependence of the width on gy » was first considered in [36]. In this case the average radiative width is equal

to dls, dSY =—d; (Ey)(,n Im xa ((’J’ T))

11
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The relation (14) is the same one as those given by detailed balance principle [4] with the
photoabsorption cross-section o, (g.Y ; T;) given by Eq.(15). It follows from Eq.(14) and (7), (9) that

the rate of the y-transitions between excited states depends mainly on thermal fluctuations of the
multipole moments in the final states.
General form of the g3 (gy ,T) coincides with that one from refs. [26 - 28],[37, 38] obtained

by making use of the averaging over the canonical ensemble with a constant temperature T.
The emission and absorption processes for y-rays are generally connected with different

radiative strengths [1, 14]. The gamma- decay (downward) strength function FEL determines the y-
emission of heated nuclei. It is associated with the average radiative widths Fl(gy). The
photoexcitation (upward) strength function ?Ek is connected with photoabsorption cross-section at

fixed temperature T. For the dipole transitions these functions have the form

<_ dl-1dey  Q(U,ZN)
fEi(eY’T):'“gé% YQ(U—ST,Z,N)zF(SY’Tf) (18)

and
G )=l (gv s T)
e ,T= =F WT_ 19
fEl (87 ) 3 &y (T'EhC)z (8' ) ( )
Here, spectral function F (gY ,T) is given by
F( T):M=_262_E[_E_T L(a T)lm (—)(&} T) (20)
.1 33 & Loga | e ST ke
1
R, L R
SR o))

where x(_)(m, T) =Sp| I‘Z Yi‘“ (r)sn (“) e (t) is the response function of the heated nuclei to the
n
field q, (t)rz Yiu (r) and ,Sn(‘] =8np (t) - Snn(t) the variation of the isovector single-particle
T

density matrix.In the case of the spherical nuclei, we have x(_) (CD,T) = SSp(r Ym(l‘) 6n(h))q w(t)

with the isovector density perturbation 5;1(‘) induced by the dipole field q,, (t)r Ym(r).
Note that the y-decay strength function depends on temperature Ty of the final states. This

temperature is a function of the y-ray energy in contrast to the initial states temperature T.
In the case of cold nuclei the radiative strength functions is also connected with the response

function by Eqs.(18) - (20) but with factor L= 7. The scaling factor L(gT,T) (21), defines the

enhancement of magnitude of the radiative strength functions in heated nuclei with temperature T as
compared to the cold nuclei. This factor can be interpreted as average number of the 1p-1h excited
" states in heated system placed in an external field with energy Ao,

12
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L(S'\( ,T) = Nip-1h = fw ? derde: n(Sl)(l - n(sz))5(81 — g2+ o) 22)

where n(e) = l(l - exp((a - p)T)) is the Fermi distribution function for occupation of the single-

particle states.
In order to get a simple closed-form expression for the response function, one assums as

usual that gamma-decay is determined by the collective motion mode which excited in the
associated photoabsorption process. Due to this the E1 transitions are considered as corresponding
to the giant dipole excitations. Next the hydrodynamic model with damping ([39]) is applied for
description of the collective motion of the neutrons against the protons which corresponds to the
GDR in the classical picture. This approach is an extension of the Steinwedel- Jensen (SJ) model
and provides a simple description of the GDR excitation simultaneously with its damping.In
common with the other classical hydrodynamics models SJ model with dampingcorresponds to the
semiclassical description of the Fermi systems by means of the Landau-Vlasov kinetic equation
with truncation of the Fermi sphere distortion by the layers of monopole and dipole multipolarities
only [40]. Note that the SJ model describes volume oscillations of the transition density and these
oscillations are almost unaffected by the dynamical distortion of the Fermi surface with
multipolarities / > 1[41]. The SJ mode plays most important role in heavy nuclei [42].

We make use of the expression for the induced dipole moment within the extended SJ model
from $14.4 of Ref.[39] and combine it with the relation for classical absorption cross-section and
Egs.(15), {20). Then we get the spectral function

Y(z)

NZ
Fle..T)=8.674-10"7—= ;B¢ , MeV?3, 23
(SY ) 0 AaOBolwexp—gY/T 23)

where

Hgr= (zjl(z)jz(z)h()JEImEE[quZ)_ZD NZBOngln(g _g:); rgy}l 0

Here, ¢, = z,/B and f, = (NZ A) 2 ( 2) are the energy and classical oscillator strength of the

2
n-resonance, respectively; z, are solutions of the equation cp(z) = (22—2) tan(z) +2z=0;
B _ .iﬂ_ e i 8 SRR
2=dfe, T)=2By |21 (5 +I0). 5 =ep+ [+ @5)

and o= 4nelh/mc=0305, By=Rohu, u=(4 bvol,-‘m)(ZN;" Az) is the isovector sound velocity
with the volume symmetry energy coefficient by, entering the semi-empirical mass formula; jn(z)

are the spherical Bessel functions.
The quantity I in Egs.(24) and (25) is damping width of the isovector velocity v=vp— vy,

where vy, v, are velocities of the proton and neutron fluids, respectively. It determines the reduced
friction force v[ in the equation for isovector velocity, Eq. (14. 60) from ref. [39]. It can be seen

13
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that this term corresponds to the expression VI = 24| dp(p;"m)}(p,r, t)_f(hh)g in semiclassical
picture given by Landau-Vlasov equation with a source term J(p,r, t) for relaxation processes

[43,44]. The source term is taken as the sum of two components [43, 44], J = J, + J;: the first one,
Je, 1s the isovector collision integral with retardation (memory) effects and the second one, J., is
connected with fragmantation contribution to the damping width (isovector one-body relaxation).
The latter component is described within the framework of the relaxation time approximation with
the relaxation time 7 different from infinity only in the distorted layer of the Fermi surface with
dipole multipolarity. The expression for damping width is obtained by the use of relation (26) and
the expression for isovector collision integral from [44]. The width is the energy-dependent one and

has the following form?

b= F(EY’T): Le (€7=T)+ Is, I'c (SY’T)Z (m‘/m)ks (SY)Fm (27)

Is= (m'/m)h/ T = (In"/nrl)kS (gT)l"m, To=Ph C) R (28)

Here, I's and I'; are the collisional and one-body contributions to the total width, respectively. The

quantity m” is an effective mass of nucleon; we will use m*=m. The quantities R and v =3up/4 are

the nuclear radius and average velocity of the nucleon, respectively; ve is the Fermi velocity.

The quantity t(g,,T) is the collisional relaxation time for the isovector dipole distortion of
the Fermi surface. It is associated with two-body collisions in the heated nucleus which is placed in
the electric field with the frequency w = &y /h . For the isotropic collision probabilities it is given by

[43, 44]

;(:—,ﬂ - I(;(l + (s], /2nT)2) (29)

The dependence of the relaxation time t. on the energy ¢, results from memory effects in the
collision integral and follows Landau's prescription [45,47-49]. The temperature dependence arises
from the smeared out behavior of the equilibrium distribution function near the Fermi momentum in

the heated nuclei.
The quantity o« in (29) is defined by the magnitude of the in-medium neutron-proton cross

section o(np) near the Fermi surface

2
B onstmal= 0381 MY, & (np) in fm> (30)

B G(np)’ 16m

The magnitude of the in-media cross section o(np) is usually taken proportional to a value
of the free space cross section ogee(np) with a factor F,

6(np)=F - 5gree (np) (31)

then the parameter o can be rewritten in the form

*Here we do not use a normalization of the damping width to the value which corresponds to the zero-sound magnitude
for the collisional width in infinite matter with arbitrary multipolarities of the Fermi sphere distortion [43, 45, 46].

14
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o= afrcc/F = 4‘7/F s> Clfree = 23.5 }4/0'free (np) (32)

when the value Ggee(np) = 5 fm? is adopted in line with refs.[43, 48, 50, 51].

The quantities o and F determine two-body contribution Bc to the damping width of the
GDR at zero temperature and the thermal relaxation time (T) for nuclear viscosity [52] in heated
nuclei:

Bc=rc(ﬁy=Er)/rrzCI/a=F'q/aﬁ'ec’ q=E?/47t1“r

WT)/h=abT?, b= (5/6)o(0p)/ 0 = 0833 5ee P e =11, (33)

where the E; and I'=I'(g, = E,T=0) are respectively the GDR energy and width at zero temperature;

o = (o(pp)+o{n)+ 20(np))/4is the in-media spin-isospin averaged nucleon-nucleon cross section
near the Fermi surface; & ,,, =3.75 fm® free averaged cross section.

The values of the B, should be located in the interval from 0 to 1. This condition determines
the limiting values of o and F,

AZotfree=qs FSFmax = Ofreee/ 9 = U-free/amin (34)

The isovector one-body relaxation width I's in (28) is taken to be similar to the wall formula
expression Iy [30, 31, 41] but scaled with an energy-dependent coefficient ky(ey) [43, 44, 53, 54].
The quantal calculations within framework of a simplified RPA [53] show significant reduction of
the one-body width in comparison with the wall value,in particular kg=0.1 in the range where
collective phonon energy exceeds the nuclear binding energy and ke= 0.7 if collective phonon
energy is negligibly small. The value ks=0.62 was adopted in ref.[54].

The spectral function F given by Egs. (23), (24) can be written in more convinient form

I_‘(SY’T)

K
Flg,,T)=8.674-107 orlr <
(61, T)=8.674-10 f:;ﬂ;;ﬁjgkh@%m%f+gﬁ&WTF

(35)

Here, wo=f,/fi=(2:°-2) / (z+2-2); K =00 and o, is the peak value of the photoabsorption cross-section
¢ =10.0 00 Fnt/T's = 8.4(NZ/A)oro/ T+ = 0.5T oTRK (36)

where orrx *60NZ /A is the classical sum rule in Mev mb.
The first term in expansion (35) corresponds to the excitation of the GDR with the energy

E, = €,-1 and therefore the quantities 3o, € >1 can be defined in the term of the GDR energy as
ﬁ():Zn:]/Er 98n=Xn'Er’ Xn =Zn/Zl » 21:2'08 (37)

The values of the parameters w, and X, at n< 4 are following: w; =1, w2 = 0.070, w3 = 0.028,
wy=0.015and x;= 1, x,=2.86,x3=4.42, x4= 5.97.

The imaginary part of the dipole response function =1 associated with the Eq.(35) exhibits
the resonance behaviour, in which the individual resonances have a Lorentzian shape with energy-
dependent width. In the cold nuclei the first term of the expression (35) for the Imy, = 1 was
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obtained within the random-phase approximation [55]. This first term of (35) is also in close
agreement with the imaginary part of the response function of the heated Fermi-liquid drop on an
external pressure, when approximation of the dissipative nuclear fluid dynamics is used for
description of the system [46].

The y-decay and photoexcitation dxpole strength functions, (18),(19), have the same
temperature-dependent limiting value for vanishing gamma-ray energy and it is equal to

(';El (SY =0Ty T)= _f)El(ST =hl= O)“ 8.674:107 g e, ¢ I'r Tr(ﬁv =0, T)/Eils (%)

where qg = Zq /Xn and qg _m—(4/175 /( ) All value of the sum Qx_»=.008656
n=]
z;=2.0815 is practically contained in the first term qg=; = 1.

3.Testing of the closed-form models for E1 strength

Here, the calculations of the E1 radiative strength functions are compared within the
framework of the SLO, EGLO models and the approach described in Sect.2. For not very high
excitation energies the main contribution to the spectral function F results from the first term of the
Eq.(35). Therefore, in what follows we use this approximation, and the expression (35) with K = 1
is referred to as the thermodynamic pole approximation [56, 57] (TPA model), F = Frp4,

oIy K ey, T) (39)
1-expl- g,{/Tin_! (2—32)2 (EVF(

Frr4 (S'P T) =8.674-1078

The SLO spectral function, F=Fjg; 0, has the Lorentzian form but with the energy independent width
I';rather than I'(g,, T),

Fsiole,»T)=8.674-1086,T; ( STF'”( }2 (40)
= E'.'Yrr

The EGLO dipole spectral function is given by [24,25], F=Fa10,

FEGLo=8.674-10 0, Ty o1 Tkler. T) +0.7 rk(ﬁYjO’T) (41)
(8%_]3%)2 ¥ (SYrk(B'YST)P Er

where the energy-dependent width I'y(g,,T)

k(e T)= {ko (A)+ (- ko(A)) 21—

I'_‘,r_EIO

U}_(E$+4ﬂ2-]—\2)_g__% (42)
r

where ko(A) is the empirical factor; gy = 4.5 MeV. For the case ko(A) = 1, the quantity '
corresponds to the expression for the collisional damping width in the infinite matter.
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The values ko(A) are mainly obtained by fitting of the low energy experimental data and they
depend on the models used for calculations of the temperature and level density. The two
expressions for quantity ko(A) are recommended in [25]

1,A <148

i 43
kolA) {1+0.09(A—148)26xp(—0.18-(A—148)),A2148 )

when the backshifted Fermi gas model [58] (BSFG) is taken for leve] densities, and

*) 1.5,A <145 ”
k =
: 1+0.131(A-145F exp(- 0.154 - (A —145)), A >145 &

for level density from [59].
Below the backshifted Fermi gas model [58] is adopted and the Eq.(43) for ko(A) is used.

The equations for the temperatures T, Tr have the following form

| . 1+ T+4a(U-a) 1+ 1+4a(U-g,-4) 1+ 1+4afaT?-T)-4as,
- ,Tf: =

2a 2a 2a

(43)

where A the energy shift parameter and a the level density parameter. The values of the a$ and A are
taken from the data file beijing bsl.dat at the rigid-body value for moment inertia (see, the RIPL

Handbook [25]}, Ch.5), and from the global fitting in [60], namely,
a=021A"" MeV'!, A=-6.6A"%+12yA™°, MeV, (46)

when data in ref.[25] are absent. Here, x= 0, 1 and 2 for odd-odd, odd-even(even-odd) and even-

even nuclides, respectively.
For very small temperature T and with negative values of A the BSFG model can lead to

negative values of the initial excitation energy U=aT%-T+A In this case usual Fermi- gas model is

used for calculation of the energy, U=a T2

The values of the GDR energy, E;, and width, [}, and the peak of the E1 absorption cross-section,
o;, are considered as the temperature- independent and taken from photonuclear data file
beijing\ gdr.dat [25] (when the data exist) or from the global systematics at zero temperature. In the

last case they equal

E.=31.2A134+206A°Y6, [, =0.026 E}9!, o, =12-120NZ/(An T, 47
T r

for spherical nuclei and

Ern1= Er/(l + 2&/3)9 Eps= Er/(l - 5/3)3
r;=0026E}1, - Ir2=0.026 3! (48)
Or,1 = Gr/3.s GCr,2 o= 2 o-l'/3

for deformed nuclei, where B is the quadrupole deformation parameter. All deformed nuclei are
considered as the axially symmetric spheroids with the effective quadrupole deformation parameters
" B. For every nucleus the quantity B is founded as an effective quadrupole deformation parameter
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which gives the same value of quadrupole moment (Q) as it is in the case when the general
expression for the Q ([61], Eq.6.53) is used allowing for the deformations of multipolarities L=2, 4,
6 with parameters B, B4 and P, respectively. The values of the last parameters were taken from
moller.dat file for nuclear ground-state masses and deformations from RIPL\cite [25], Ch.1, (see

also [62]).
For axially deformed nuclei the E1 strengths (18) and (19) are the sum of two spectral

function F with the parameters E; j, [y, or, and E; j, I';1, 011, respectively.
The two approaches are used for the scaling coefficient ky(e,) in Eq.(28) for one-body

isovector width I's:
1.the energy-independent value

ks(ey)= ksley =Er)={rr -Tcley =Er, T=0))/T, (49)

i.e., the quantity k(E,)= ks(8y=Er) is obtained from fitting of the the GDR width at zero

temperature and it defines the one-body contribution near the GDR resonance energy;
2.the energy-dependent value in a power approximation of the form

n
( )w ks (Er)+ (ks (0)" ks( r)) (SY_EI‘)/EI ey S 2E;
ks Ey/ = (50)
ks (0)’ Ey 2 2Er
where the quantity ky(0)= kq(g,~0) defines the fragmentation width at zero energy.
The quantity B, (33) appears as more convenient than F in calculations of the «,
o =q/Be, q=0.02533E3/I; (51

determining two-body component of the width by Eqs.(27), (29). The reason is that maximal value
of the F is changed from nucleus to nucleus as opposite to B, see Eqs.(33) and (34).

It should be noted that the damping component ['; given by the Eqgs.(27), (29) with o from
(32), (33), is two-body relaxation width only in some specific medium where multipolarity of the
Fermi sphere distortion does not exceed dipole multipolarity and two-body collisions are isotropic
ones with energy-independent cross-sections ¢ = Ofee. Therefore the parameters Be, (33), and F,
(31), are respectively two-body contribution to width and proportionality factor of the in-medium
cross-section to free-space magnitude in the specific medium and their values account for the
difference between real system and specific medium too.

The dipole y-decay strength functions <f—151 considered as a function of mass number are

shown in fig.1. The experimental data taken from kopecky.dat file of the RIPL-handbook ([25]).
Calculations were performed for nuclei from this data file (50 nuclei corresponding to (n,y)
reaction) and at excitation energies and gamma-ray energies are equal to mean energy of El
transitions. These energies are rather close to the corresponding neutron binding energies. The
different lines connect the values calculated within framework of given model. Hereafter the values
n = 0.5, ky0) = 0.3, B.= 0.35 and n = 3, ky(0) = 0.7, B¢ = 0.7 arc used in TPA calculations. The
values of index n are only indicated in the figure for short.

As it can be seen from this figure, for gamma-ray energies near neutron binding energies the
calculations within the TPA model describe experimental data in somewhat better way for heavy
nuclei with A > 150 as compared with other approaches. The parameters n = 3, ky(0) = 0.7, B.= 0.7
can be recommended as more appropriate set in TPA calculations.
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Fig.1. The E1 gamma-decay strength functions versus mass number A.

In fig.2 the results of the calculations of the strength functions ‘;El in "**Nd with the initial

excitations energy E which is equal to the neutron binding energy B, ~ 7.8 MeV are shown. The
experimental data are taken from ref.[15].
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The results obtained by EGLO and TPA approaches are almost the same at low energies
£,<3MeV. In this range the EGLO and TPA models describe experimental data much better than the
SLO model and give a non-zero temperature-dependent limit of the strength function for vanishing
gamma-ray energy, see Eq.(38). The calculations by TPA and SLO models at the energies €,25MeV
lie more close to experimental data than within EGLO method.

Figure 3 demonstrates the dependence of the y-decay TPA strength function on the initial
excitation energy U. The El strength depends rather strongly on the energy U. It is usually named
as a breakdown of Brink hypothesis [14]. This violation of Brink hypothesis is growing with
increasing excitation energy. The difference of the EI strength function values calculated at
different U is increased with decreasing y-energies and these deviations are more important for the
y-transitions with energies under or of the order of the nuclear temperature T.

In figs.4, 5 the comparison is shown between different approaches in the case the

photoabsorption strength function ?El , BEqs.(19), (39), (40) and (41) at different values of the

temperature T = 0.01, 2 MeV of absorbing nucleus '““Nd. The notations are the same as in figs.2.
The experimental data are taken from ref.[15]. They correspond to (n,y) reaction at g, = 6-8 MeV
and were obtained from photoabsorption cross-section in the range €,> 8§ MeV.

The behaviour of the E1 strength functions calculated by the TPA method is almost in
coincidence with SLO model in the vicinity of the GDR peak energy. It is mainly resulted from
account of the one-body relaxation width I, (28), which is practically independent of the gamma-
ray energy. Note that the SLO approach is probably the most appropriate simple method for the
estimation of the E1 photoabsorption strength for cold nuclei in the range of giant resonance peak

energy. The strength function ?El depends only weakly on the temperature if a magnitude of the T

is much smaller than the gamma-ray energy. The form of the strength is rather sensitive to the
excitation energy of absorbing nucleus at low energies
of the y-rays.

4.Conclusions

A closed-form TPA approach is developed for average description of the El radiative
strength functions. This method is not time consuming and is applicable for calculations of the
statistical contribution to the dipole strengths for processes of the gamma-decay as well as
photoabsorption with compound system formation. It has the following main features:

1.The general expression between radiative strength function and imaginary part of the
temperature response function is used. This relationship is based on microcanonical ensemble for
initial excited states and it is in line with a detailed balance principle.

2.The form of the temperature response function is taken within framework of the
Steinwedel-Jensen hydrodynamic model with damping.The response function has the Lorentzian
line shape (two for axially deformed nuclei) with width depending on y-ray energy. The Landau-
Vlasov kinetic approach with the monopole and dipole distortions of the Fermi sphere is employed
to calculate the damping width which is proportional to friction coefficient of the isovector velocity
of the relative motion of the protons over neutrons.

3.Description of damping in the TPA method is based on modern physical understanding of
the relaxation processes in Fermi systems. The contributions to the Lorentzian width resulting from
the interparticle collisions as well as fragmentation component caused by interaction of particles
with time dependent self-consistent mean field are included. A method of independent source of
relaxation is employed to account for all contributions to width. The energy dependence of the
collisional contribution is arisen from memory effects in the collision integral.
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4.The form of the El radiative strength function within framework of the TPA model is
determined by both the Lorentzian shape of the response function with energy dependent width and
an average number of the excited 1p-1h states at given y-ray energy. Shell structure and pairing
correlations are included in phenomenological way by use of the level density parameters allowing
for these effects. The TPA approach is characterized by a non-zero limit of the E1 strength for
vanishing gamma-ray energy. It gives the temperature- dependent form of the strength, i.e. leads to a

breakdown of Brink hypothesis.
The comparison between calculations within TPA, EGLO and SLO models and

experimental data showed that the TPA approach provides rather reliable method of a unified
description of the y-decay and photoabsorption strength functions in a relatively wide energy
interval, ranging from zeroth gamma-ray energy to values above GDR peak energy. The TPA model
will be useful for the prediction of the downward and upward radiative strength functions for cold
and heated nuclei.. Values n = 3, ks(0) = 0.7 and B, = 0.7 can be recommended as best suited set to
calculations of the El strengths in medium and heavy nuclei by the TPA model. It should be noted
that a behaviour of the TPA strength functions is rather sensitive to the type of y-ray energy
dependence of scaling coefficient ki(e,) in Eq.(28) for one-body isovector width. The
phenomenological approximations (49) and(50) are currently used. The further investigations of the
fragmentation width are necessary to refine the form of the scaling coefficient.

We are very grateful to Profs. A.V. Ignatyuk, P. Oblozinsky and M.G.Urin for valuable
discussions and comments. This work was supported in part by the IJAEA under Contract No.
10308/R1.
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CTATACTHYHWMI OTTAC PAIIAHIAHUX CHJIOBUX ©YHKIIA
B.A.ILnsoiiko, C.M.€xo0B, A.C.Mukynsx

Po3po6ieHo TepMOAMHAMIYHKH NiAXiA Aus onucy ycepennennx El paianiiinux cunosrx QyHkuii
3 BHKOPHCTaHHAM MIKPOKaHOHIYHOTO aHcambis [is MOYATKOBMX CTaHiB. 3aTyXaHHA KOJIEKTHBHMX
36y/DKeHb PO3MISHYTO HAMIBKIACHYHO 3 BMKOPHCTaHHAM CYYaCHHX YsABJIEHb TPO MPOLECH penakcauil y
Depmi-cictemax. [lokasaHo, W0 MONeNb 3NaTHA ONMCATH JaHi MO CHIOBMM (yHKUisM y-posnagy Ta
(DOTOMOIrNMHAHHA Y CEPEAHIX Ta BXKKMX AApax y BIMHOCHO IIMPOKOMY iHTepBali eHeprii, a came Bix
HyJIBOBOI eHeprii ramMma-ksaHTiB 10 3nauens 6ing [JIP. Jlng snep 3 A>150 i npu eHepriax raMma-KBaHTIB
no6M3y eHepril 3B'S3Ky HEHTPOHIB 3aMPONOHOBAHA MOJIENb OIMKCYE eKCTEPUMEHTANbHI JaHi Kpalle, Hik

iHIi aHaITHYHI NIIXOOH.

CTATUCTHYECKOE OIMTMCAHME PAJIUAITAOHHEBIX CHJIOBBIX ® YHKIUHA
B.A.ILmwiiko, C.M.Exo0B, A.C.MuxyIaK

Pa3BHT TepMOAMHAMHYECKHH TIOAXO/ ONKcaHus CpelHHX El paguaiMOHHBIX CHIOBBIX QyHKumi ¢
MCIIONb30OBAHHEM MHUKPOKAHOHHUUYECKOro aHcambia [is HayaldbHBIX COCTOSHUH. 3aTryXaHWe KOMIEKTHBHBIX
BO30YXKIEHHI pacCMaTpPUBaeTCs MOJYKIACCHYECKH Ha OCHOBE COBPEMEHHBIX MPEACTABJEHHH O mpoLeccax
penakcauuu B ®epmu-cucremax. ITokasaHo, 4TO MOAEE ONWCHIBACT JAHHbIE MO CHJIOBbIM (QYHKLMAM Y-
pacnaja v (GOTOMOITOLIEHHS B CPEIHUX H TAKEIBIX AAPax B OTHOCHTEBHO IUHPOKOM MHTEpBAje SHEePruH,
TMPOCTHPAIOLIEMCs OT HyJeBBIX 3HaueHmil Jo sHepruii B6nusu [JIP. Jlna spep ¢ A>150 v npu eHepruax
raMMa-KBaHTOR BONM3H €HEpryil cBs3M HEHTPOHOB MPEANOoKEeHHas MOJENb OITMCHIBACT EKCNePUMEHTalbHbIE
JAHHBIE JIyYILe, YeM APYTrHe aHATMTHYECKHE TT0AXO0bI
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