NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE ZHYTOMYR POLYTECHNIC STATE UNIVERSITY

I.M. Gudkov, M.M. Vinichuk

RADIOBIOLOGY & RADIOECOLOGY

Textbook for students of higher educational institutions

Recommend by Academic Council of National University of Life and Environment Sciences of Ukraine

Kyiv-Kherson 2019

Reviewers:

D.V. Lukashov, Doctor of Biology, Prof. (Taras Shevchenko National University of Kyiv)

L.D. Romanchuk, Doctor of Agriculture, Prof. (Zhytomyr National Agroecological University)

V.A. Gaichenko, Doctor of Biology, Prof. (National University of Life and Environmental Sciences of Ukraine, Kyiv)

S.M. Amelina, Doctor of Pedagogical Sciences, Prof., Head of Department of Foreign Philology and Translation (National University of Life and Environmental Sciences of Ukraine, Kyiv)

> Recommend by Academic Council of National University of Life and Environment Sciences of Ukraine (minutes No 2 dated 25 September 2019)

Gudkov I.M.

G92 Radiobiology and Radioecology : textbook for students of higher educational institutions / I.M. Gudkov, M.M. Vinichuk. – Kyiv-Kherson : Oldi-Plus, 2019. – 416 p. (in English).

ISBN 978-966-289-307-6

This book presents principal propositions of modern radiobiology and radioecology. An overview of the field of science about the nature and sources of ionizing radiation, radiosensitivity of organisms of various taxonomic groups, reactions of organisms on the ionizing radiation, the ways of radiation protection and postradiation repair is provided. The migration of radioactive substances in the objects of an environment and their protection against radiation in agriculture, medicine, and food-processing industry is discussed. The main principles of radiation safety and hygiene are provided.

The present book is designed to help in the education of groups of students with English training of special courses as well as for masters, post-graduate students, and teachers.

UDC 577.3+504.7:621.039.58

ISBN 978-966-289-307-6

© Oldi-Plus, 2019

CONTENTS

PREFACE
1. INTRODUCTION TO RADIOBIOLOGY: THE SUBJECT
AND TASKS, THE HISTORY AND PERSPECTIVES
1.1. Definition of radiobiology and its place among
interdisciplinary sciences
1.2. Trends and problems of radiobiology
1.3. History of radiobiology: stages of development
1.4. Problems of radiobiology at modern stage
1.5. Necessity of acquisition of radiobiological knowledge
2. TYPES OF IONIZING RADIATION,
THEIR CHARACTERISTIC AND DOSIMETRY 22
2.1. Structure of atom. Isotopes
2.2. The phenomenon of radioactivity. Law of radioactive decay 32
2.3. Types of nuclear transformations
2.4. Types of ionizing radiation 39
2.4.1. Electromagnetic ionizing radiation 39
2.4.2. Corpuscular ionizing radiation 4
2.5. Interaction of ionizing radiation with matter
2.5.1. Interaction of electromagnetic radiation with matter 4
2.5.2. Interaction of corpuscular radiation with matter
2.5.3. Linear energy transfer of ionizing radiation and their
relative biological efficiency 4
2.6. Radiometry and dosimetry of ionizing radiation.
Units of radioactivity and doses.
2.7. Relations between radioactivity and dose of radiation
2.8. Forms of irradiation
3. SOURCES OF IONIZING RADIATION
IN THE ENVIRONMENT 60
3.1. Cosmic radiation 6
3.2. Radiation of radionuclides
3.2.1. Radiation of natural radionuclides 6

3.2.2. Radiation of artificial radionuclides	73
3.3. Generators of ionizing radiation	84
3.4. The contribution of various sources of ionizing radiation	86
	00
4. CHEMICAL AND BIOCHEMICAL INTERACTIONS	
OF IONIZING RADIATION WITH SUBSTANCES	
AND STRUCTURES OF CELLS	89
4.1. Direct and indirect actions of ionizing	
radiation on molecules	89
4.2. Radiation-induced chemical transformations of molecules	
in water solution	92
4.3. Radiation-induced damages of biologically	06
A 4 Dediction induced damages of membranes	90
4.4. Radiation-induced damages of memoranes	105
4.5. Structural-inclusione hypothesis of folizing radiation effects	106
4.6 Comparative radiosensitivity of various types of cells	100
and cellular structures.	108
5. BIOLOGICAL EFFECTS OF IONIZING IRRADIATION	115
5.1.1 Dediction stimulation	115
5.1.2. Padiation induced morphological changes	120
5.1.2. Radiation-induced morphological changes	120
5.1.3. Radiation steriess	131
5.1.5 Organism death	136
5.1.6 Genetic effects	138
5.2. Deterministic (early) and stochastic (late)	100
radiobiological effects	141
5.3. Radiomimetic induced biological effects	. 145
6. RADIOSENSITIVITY OF ORGANISMS	147
6.1. Radiosensitivity and radioresistance	147
6.2. Comparative radiosensitivity of organisms	. 149
6.2.1. Radiosensitivity of plants	150

6.2.2. Radiosensitivity of animals	. 155
6.2.3. Radiosensitivity of bacteria and viruses	159
6.2.4. Radiosensitivity of phytocenosis	159
6.3. The reasons of wide variability of organism radiosensitivity	.163
6.4. Comparative radiosensitivity of cells on different stages	
of their development	. 167
6.5. Critical organs	171
6.6. Effects of low dose radiation on living organisms	172
7. MODIFICATIONS OF RADIATION DAMAGES	
OF AN ORGANISM	177
7.1. Biological radiation protection and sensibilization	.177
7.1.1. Physical radioprotective and radiosensitizing agents	178
7.1.2. Chemical radioprotective and radiosensitizing agents	183
7.1.3. Classification of radioprotective agents and mechanisms	
of their action	184
7.1.4. Radioprotective agents with prolonged action	.192
7.1.5. Radioblockators and radiodecorporants	192
7.1.6. Radiosensibilizators	193
7.2. Postradiation recovery of an organism	195
7.2.1. Reparation	. 197
7.2.2. Repopulation	201
7.2.3. Regeneration	204
7.2.4. Reconstruction	. 206
7.2.5. Regulation of postradiation recovery processes	.209
8. BIOLOGICAL EFFECTS	
OF INCORPORATED RADIONUCLIDES	.212
8.1. Biological effects of incorporated radionuclides on plants	213
8.2. Biological effects of incorporated radionuclides on animals	218
8.3. Radiation-induced damage of "hot particles" incorporation	221
8.4. Dosimetry principles of ionizing radiation	
of incorporated radionuclides	. 223
8.5. Prognostication of radionuclide uptake	
by agricultural products	.226

8.5.1. Prognostication of radionuclide uptake by plants	. 228
8.5.2. Prognostication of radionuclide uptake by animals	. 232
8.6. Norm setting of radionuclide content in agricultural products.	. 232
9. RADIOACTIVE SUBSTANCES MIGRATION	
IN THE ENVIRONMENT	.238
9.1. General principles of radioactive substances migration in the environment	.239
9.2. Atmospheric dispersion and deposition of radionuclides	.241
9.3. Migration of radioactive substances in soil	.243
9.4. Plant uptake of radionuclides from soil	250
9.4.1. Uptake by above-ground organs	251
9.4.2. Root uptake	.255
9.4.3. Behaviour of radionuclides in forest ecosystems	. 259
9.5. Transfer of radionuclides to food producing animals	. 261
10. FARMING ON THE TERRITORIES	
CONTAMINATED BY RADIONUCLIDES	. 270
10.1. Basic principles of farming on the territories contaminated	
by radionuclides	. 270
10.2. Measures to reduce radionuclide transfer from soil to plants.	. 271
10.2.1. Soil tillage	. 272
10.2.2. The application of chemical agents and fertilizers	.275
10.2.3. The change of plants in a crop rotation	. 281
10.2.4. The change of irrigation regime	. 284
10.2.5. Application of special agents and countermeasures	. 285
10.3. Measures reducing radionuclide transfer	
in animal production	. 287
10.3.1. The improvement of animals feeding	. 288
10.3.2. Working out of rations	289
10.3.3. Application of additives and other supplements	
to the ration	. 292
10.3.4. Organizational measures	. 295
10.4. The reduction of radionuclide content in plant and animal	
production by primary technological processing	.297

10.4.1. The decontamination of plant products	298
10.4.2. The decontamination of animal products	. 300
11. RADIATION PROTECTION OF THE ENVIRONMENT	.307
11.1. Radiation protection of soils against	
radioactive contamination	309
11.1.1. Land-reclamation and erosion control measures	
on the territories contaminated by radionuclides	310
11.1.2. Phytodezactivation of soils	. 311
11.2. Radiation protection of plants against radionuclide uptake	. 317
11.3. Radiation protection of animals against radionuclide uptake	. 317
11.4. Radiation protection of the aquatic environment against	
radionuclide uptake	. 318
11.4.1. Radionuclide accumulation in the continental water	. 318
11.4.2. Radiation protection of the aquatic environment	. 319
11.5. The reduction of radionuclide absorption and accumulation	201
In a numan organism	321
radioactive contamination	327
11.7 Strategies of radiation protection of forest ecosystems	. 331
12 USING OF IONIZING DADIATION IN ACDICULTUDE	
12. USING OF IONIZING KADIATION IN AGRICULTURE,	334
12.1 Radiation technique used	. 334
in radiation-biological technologies	336
12.2. The application of ionizing radiation in agriculture	. 337
12.2.1. Radiation-biological technologies in plant-growing	.337
12.2.2. Radiation-biological technologies in animal-breeding	. 350
12.3. The application of ionizing radiation in food industry	353
12.4. The application of ionizing radiation in medicine	.355
13. ISOTOPIC INDICATORS METHOD	
IN BIOLOGY AND ECOLOGY	. 364
13.1. Tagged atoms	. 364
13.2. Radioactive and stable isotopes	. 367
13.3. Labeled compounds	368

13.4. Indicative dose	. 371
13.5. The main ways of using isotopic indicators	
in plant research	. 372
13.5.1. Investigation of transport and distribution	
of plant elements	373
13.5.2. Study of the role of certain substances	
in the metabolism of plants	. 376
13.6. Radioactive isotopes in vegetation and field studies	. 378
13.7. Radioautography	. 381
13.7.1. Macroradioautography	. 383
13.7.2. Microradioautography	
13.8. The application of stable isotopes	. 386
CONCLUSION	. 391
LIST OF RECOMMENDED TEXTBOOKS	. 394
AUTHOR INDEX	. 395
SUBJECT INDEX	. 397