Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 4, pages 358-367.
Section: Radiobiology and Radioecology.
Received: 24.07.2025; Accepted: 26.11.2025; Published online: 29.12.2025.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2025.04.358

Study of the antagonistic activity of Trichoderma spp. strains isolated from sites with different levels of radiation contamination in the Chornobyl Exclusion Zone against phytopathogenic hyphal fungi

T. I. Tugay1,2,*, A. V. Tugay1,2, V. O. Zheltonozhsky3, O. M. Yurieva2, L. T. Nakonechna2, L. V. Sadovnikov3, N. M. Sergiichuk1, O. B. Polishchuk4

1 The Open International University of Human Development "Ukraine", Kyiv, Ukraine
2 Zabolotny Institute of Microbiology and Virusology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
4 National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine


*Corresponding author. E-mail address: tatyanatugay2@gmail.com

Abstract: A radiometric analysis of soil samples from the studied areas of the exclusion zone, which have been under exposure to chronic irradiation for more than three decades, was carried out, from which micromycetes of different species of the genus Trichoderma were isolated, and their biological activity was studied. It was shown that the radial growth rate of these fungi exceeds the average values for species of this genus. It was found that the isolated strains of the species T. koningi and T. atroviride have very high (over 90 %) antagonistic activity towards the phytopathogenic fungi Rhizoctonia solani and Nectria inventa, and the species T. viride, T. harzianum, and Trichoderma sp. showed antagonistic activity towards the studied species of phytopathogenic hyphal fungi researched, but their magnitude was different.

Keywords: chronic irradiation, low doses, Chornobyl Exclusion Zone, radial growth rate, antagonistic activity, phytopathogenic fungi, strains of the genus Trichoderma.

References:

1. N.N. Zhdanova et al. Ionizing radiation attracts soil fungi. Mycol. Res. 108(9) (2004) 1089. https://doi.org/10.1017/S0953756204000966

2. T. Tugay et al. The influence of ionizing radiation on spore germination and emergent hyphal growth response reactions of microfungi. Mycologia 98(4) (2006) 521. https://doi.org/10.1080/15572536.2006.11832654

3. T.I. Tugai. Effect of low doses of ionizing radiation on the accumulation of melanin pigments and the activity of catalase and superoxide dismutase in Cladosporium cladosporioides. Ukr. Biochem. J. 79(6) (2007) 93. (Ukr)

4. J. Dighton, T. Tugay, N. Zhdanova. Fungi and ionizing radiation from radionuclides. FEMS Microbiol. Lett. 281(2) (2008) 109. https://doi.org/10.1111/j.1574-6968.2008.01076.x

5. T. Tugay et al. Effects of ionizing radiation on the antioxidant system of microscopic fungi with radioadaptive properties found in the Chernobyl Exclusion Zone. Health Phys. 101(4) (2011) 375. https://doi.org/10.1097/HP.0b013e3181f56bf8

6. T.I. Tugay. Influence of ionizing radiation on activity of enzymes of antioxidant protection of Paecilomyces lilacinus (Thom) Samson. Microbiol. Z. 73(1) (2011) 29. (Ukr) http://nbuv.gov.ua/UJRN/MicroBiol_2011_73_1_6

7. T.I. Tugay, A.V. Tugay. Adaptation of microfungi to chronic ionizing radiation. New facts and hypotheses. Mikrobiol. Z. 79(1) (2017) 76. https://doi.org/10.15407/microbiolj79.01.076

8. V. Tugay et al. Radial growth and activity of antioxidant enzymes in the three post-radiation Cladosporium cladosporioides generations. Nucl. Phys. At. Energy 18(1) (2017) 72. (Ukr) https://doi.org/10.15407/jnpae2017.01.072

9. N.V. Borzova et al. Glycosidase and proteolytic activity of micromycetes isolated from the Chernobyl Exclusion Zone. Mikrobiol. Z. 82(2) (2020) 51. (Ukr) https://doi.org/10.15407/microbiolj82.02.051

10. S. Haouhach et al. Three new reports of Trichoderma in Algeria: T. atrobrunneum, (South) T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms 8(10) (2020) 1455. https://doi.org/10.3390/microorganisms8101455

11. H. Zheng et al. New species of Trichoderma isolated as endophytes and saprobes from Southwest China. J. Fungi 7(6) (2021) 467. https://doi.org/10.3390/jof7060467

12. R. Wang et al. The newly identified Trichoderma harzianum partitivirus (ThPV2) does not diminish spore production and biocontrol activity of its host. Viruses 14(7) (2022) 1532. https://doi.org/10.3390/v14071532

13. I. Vicente et al. Combined comparative genomics and gene expression analyses provide insights into the terpene synthases inventory in Trichoderma. Microorganisms 8(10) (2020) 1603. https://doi.org/10.3390/microorganisms8101603

14. A. Abbas et al. Trichoderma spp. genes involved in the biocontrol activity against Rhizoctonia solani. Front. Microbiol. 13 (2022) 884469. https://doi.org/10.3389/fmicb.2022.884469

15. B. Tilocca, A. Cao, Q. Migheli. Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front. Microbiol. 11 (2020) 41. https://doi.org/10.3389/fmicb.2020.00041

16. D.C. Fontana et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5) (2021) 570. https://doi.org/10.3390/pathogens10050570

17. B. Sánchez-Montesinos et al. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. J. Fungi 7(8) (2021) 598. https://doi.org/10.3390/jof7080598

18. A.A. Al-Surhanee. Protective role of antifusarial eco-friendly agents (Trichoderma and salicylic acid) to improve resistance performance of tomato plants. Saudi J. Biol. Sci. 29(4) (2022) 2933. https://doi.org/10.1016/j.sjbs.2022.01.020

19. R. Tyśkiewicz et al. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 23(4) (2022) 2329. https://doi.org/10.3390/ijms23042329

20. P.K. Mukherjee et al. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol. Rev. 39 (2022) 15. https://doi.org/10.1016/j.fbr.2021.11.004

21. A. Alfiky, L. Weisskopf. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. J. Fungi 7(1) (2021) 61. https://doi.org/10.3390/jof7010061

22. M.A. Abro et al. Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. Plant Pathol. J. 35(6) (2019) 598. https://doi.org/10.5423/PPJ.OA.05.2019.0129

23. P.L. Kashyap et al. Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. J. Soil Sci. Plant Nutr. 20 (2020) 160. https://doi.org/10.1007/s42729-019-00114-y

24. J.G. Erazo et al. Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biol. Control 164 (2021) 104774. https://doi.org/10.1016/j.biocontrol.2021.104774

25. P. Guzmán-Guzmán, H. Etesami, G. Santoyo. Trichoderma: a multifunctional agent in plant health and microbiome interactions. BMC Microbiol. 25 (2025) 434. https://doi.org/10.1186/s12866-025-04158-2

26. V.A. Zheltonozhsky et al. Spectroscopy of radiostrontium in fuel materials retrieved from the Chernobyl Nuclear Power Plant. Health Physics 120(4) (2021) 378. https://doi.org/10.1097/hp.0000000000001349

27. N.V. Strilchuk. The WinSpectrum. Manual (Kyiv, 2000).

28. M.A. Rifai. A Revision of the Genus Trichoderma. Mycological papers. Vol. 116 (England, Kew, Surrey, Commonwealth Mycological Institute, 1969) 56 p. Google books

29. K.H. Domsch, W. Gams, T.-H. Anderson. Compendium of Soil Fungi. 2nd ed. (Eching, IHW-Verlag, 2007) 672 p. Google books

30. Ya.I. Savchuk et al. Trichoderma strains - antagonists of plant pathogenic micromycetes. Microbiol. Z. 84(1) (2022) 24. https://doi.org/10.15407/microbiolj84.01.020

31. I.M. Kurchenko et al. Antibacterial activity of different strains of the genus Trichoderma. Microbiol. Z. 84(4) (2022) 59. https://doi.org/10.15407/microbiolj84.04.059

32. S. Singh et al. Harnessing Trichoderma mycoparasitism as a tool in the management of soil dwelling plant pathogens. Microbial Ecology 87 (2024) 158. https://doi.org/10.1007/s00248-024-02472-2

33. Y. Tian et al. Antagonistic and detoxification potentials of Trichoderma isolates for control of zearalenone (ZEN) producing Fusarium graminearum. Front. Microbiol. 8 (2018) 325406. https://doi.org/10.3389/fmicb.2017.02710

34. K. Saravanakumar et al. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci. Rep. 7 (2017) 1771. https://doi.org/10.1038/s41598-017-01680-w

35. V.I. Herrera-Téllez et al. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 20(8) (2019) 2007. https://doi.org/10.3390/ijms20082007

36. X. Yao et al. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 14 (2023) 1160551. https://doi.org/10.3389/fmicb.2023.1160551

37. R.A. Metwally. Arbuscular mycorrhizal fungi and Trichoderma viride cooperative effect on biochemical, mineral content, and protein pattern of onion plants. J. Basic Microbiol. 60(8) (2020) 712. https://doi.org/10.1002/jobm.202000087

38. X. Wang et al. Preparation of porous carbon based on partially degraded raw biomass by Trichoderma viride to optimize its toluene adsorption performance. Environ. Sci. Pollut. Res. 28 (2021) 46186. https://doi.org/10.1007/s11356-021-12796-y

39. Z.A. Alothman et al. Bioremediation of explosive TNT by Trichoderma viride. Molecules 25(6) (2020) 1393. https://doi.org/10.3390/molecules25061393

40. D. Luo et al. Trichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch and spectroscopic studies. J. Hazard. Mater. 401 (2021) 123249. https://doi.org/10.1016/j.jhazmat.2020.123249