Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 4, pages 330-338.
Section: Radiation Physics.
Received: 24.04.2025; Accepted: 26.11.2025; Published online: 29.12.2025.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2025.04.330

Properties of electron transport along the layers in electron irradiated layered n-InSe crystals

I. V. Mintyanskii1,*, P. I. Savitskii1, V. T. Maslyuk2

1 Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Chernivtsi Branch, Chernivtsi, Ukraine
2 Institute of Electron Physics, National Academy of Sciences of Ukraine, Uzhhorod, Ukraine


*Corresponding author. E-mail address: illya.mintyanskyy@gmail.com

Abstract: The effect of various doses of electron irradiation (10 MeV) on electrical properties along the layers of low-resistivity n-InSe single crystals are investigated in the range of 80 to 400 K. The parameters of the samples with the same accumulated dose (270 kGy), but at different series irradiation, are compared. The decrease of free electron density after e-influence is caused by a decreased amount of interstitial indium atoms because of their aggregation between the layers. The established decrease of mobility along the InSe layers with increasing radiation dose is considered to be due to the increased contribution of two-dimensional electrons. The extrema of RH(T) and μ⊥С(Т) dependencies are explained as a result of a redistribution of electrons between the 2D states and the main conduction band of InSe.

Keywords: layered crystal, indium monoselenide, electron irradiation, Hall coefficient, mobility, 2D electron gas, scattering mechanisms.

References:

1. Zh. Yang, J. Hao. Recent progress in 2D layered III-VI semiconductors and their heterostructures for optoelectronic device applications. Adv. Mater. Technol. 4 (2019) 1900108. https://doi.org/10.1002/admt.201900108

2. X. Zhou et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater. 28 (2018) 1706587. https://doi.org/10.1002/adfm.201706587

3. H. Cai et al. Synthesis and emerging properties of 2D layered III-VI metal chalcogenides. Appl. Phys. Rev. 6 (2019) 041312. https://doi.org/10.1063/1.5123487

4. N. Ubrig et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 19 (2020) 299. https://doi.org/10.1038/s41563-019-0601-3

5. M. Dai et al. Properties, synthesis and device applications of 2D layered InSe. Adv. Mater. Technol. 7 (2022) 2200321. https://doi.org/10.1002/admt.202200321

6. O.M. Sydor. Spectral and photoelectric characteristics of the gamma irradiated intrinsic oxide-InSe heterostructures obtained under different conditions. Radiat. Phys. Chem. 126 (2016) 90. https://doi.org/10.1016/j.radphyschem.2016.05.017

7. A.V. Krasheninnikov. Are two-dimensional materials radiation tolerant? Nanoscale Horiz. 5 (2020) 1447. https://doi.org/10.1039/D0NH00465K

8. T. Vogl et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10 (2019) 1202. https://doi.org/10.1038/s41467-019-09219-5

9. I.V. Mintyanskii, P.I. Savitskii, Z.D. Kovalyuk. Two-band conduction in electron-irradiated n-InSe single crystals. Phys. Status Solidi B 252 (2015) 346. https://doi.org/10.1002/pssb.201451146

10. Z.D. Kovalyuk, I.V. Mintyanskii, P.I. Savitskii. Effect of Electron Irradiation on Conductivity Anisotropy in n-InSe. J. Nano- Electron. Phys. 9 (2017) 06013. (Ukr) https://doi.org/10.21272/jnep.9(6).06013

11. I.V. Mintyanskii et al. Effect of the electron irradiation on electrical properties of n-InSe and their anisotropy. Nucl. Phys. At. Energy 19 (2018) 136. (Ukr) https://doi.org/10.15407/jnpae2018.02.136

12. I.V. Mintyanskii, P.I. Savitskii, Z.D. Kovalyuk. Two-dimensionalization of electron gas in n-InSe crystals induced by electron irradiation. Acta Phys. Pol. A 137 (2020) 1031. http://doi.org/10.12693/APhysPolA.137.1031

13. J. Bourgoin, M. Lannoo. Point Defects in Semiconductors. Experimental Aspects (Berlin/Heidelberg, Springer-Verlag, 1983) 295 p. https://doi.org/10.1007/978-3-642-81832-5

14. J. Martinez-Pastor et al. Shallow-donor impurities in indium selenide investigated by means of far-infrared spectroscopy. Phys. Rev. B 46 (1992) 4607. https://doi.org/10.1103/PhysRevB.46.4607

15. A. Chevy. Segregation of dopants in melt-grown indium selenide crystals. J. Appl. Phys. 56 (1984) 978. https://doi.org/10.1063/1.334038

16. Ph. Schmid. Electron-lattice interaction in layered semiconductors. Nuovo Cim. B 21 (1974) 258. https://doi.org/10.1007/BF02737482

17. L.R. Weisberg. Anomalous mobility effects in some semiconductors and insulators. J. Appl. Phys. 33 (1962) 1817. https://doi.org/10.1063/1.1728839

18. A. Segura et al. Three-dimensional electrons and two-dimensional electric subbands in the transport properties of tin-doped n-type indium selenide: Polar and homopolar phonon scattering. Phys. Rev. B 43 (1991) 4953. https://doi.org/10.1103/PhysRevB.43.4953

19. L. Laiho et al. Shallow donor states of Ag impurity in ZnSe single crystals. Semicond. Sci. Technol. 21 (2006) 654. https://doi.org/10.1088/0268-1242/21/5/015

20. E. Arushanov, Ch. Kloc, E. Bucher. Impurity band in p-type β-FeSi2. Phys. Rev. B 50 (1994) 2653. https://doi.org/10.1103/PhysRevB.50.2653

21. D.D. Nedeoglo. Formation and properties of the impurity band in n-ZnSe. Phys. Status Solidi B 80 (1977) 369. https://doi.org/10.1002/pssb.2220800143

22. O.V. Emelianenko et al. Formation and properties of impurity band in n-GaAs. Fizika Tverdogo Tela (Sov. Phys. Solid State) 7 (1965) 1063. (Rus)

23. J.H. Schön et al. Transport properties of n-type CuGaSe2. Sol. Energy Mater. Sol. Cells 61 (2000) 417. https://doi.org/10.1016/S0927-0248(99)00165-8

24. E. Arushanov et al. Impurity band in p-type CuInSe2. Phys. Status Solidi A 176 (1999) 1009. https://doi.org/10.1002/(SICI)1521-396X(199912)176:2%3C1009::AID-PSSA1009%3E3.0.CO;2-H

25. E. Arushanov et al. Transport properties of n-ZrNiSn single crystals. Phys. Status Solidi A 177 (2000) 511. https://doi.org/10.1002/(SICI)1521-396X(200002)177:2%3C511::AID-PSSA511%3E3.0.CO;2-A

26. Y. Kajikawa, K. Okamura. Impurity-band conduction in polycrystalline films of GaSb and GaSbAs grown by molecular-beam deposition. Phys. Status Solidi C 9 (2012) 274. https://doi.org/10.1002/pssc.201100227

27. J.S. Blakemore. Semiconductor Statistics (New York, Pergamon Press, 1962) 381 p. Book

28. J. Martinez-Pastor, A. Segura, A. Chevy. High-temperature behavior of impurities and dimensionality of the charge transport in unintentionally and tin-doped indium selenide. J. Appl. Phys. 74 (1993) 3231. https://doi.org/10.1063/1.354597

29. G.L. Belenkii, E.A. Vyrodov, V.N. Zverev. Quantum transport studies of electron accumulation layers in InSe bulk crystals. Nuovo Cim. D 11 (1989) 1571. https://doi.org/10.1007/BF02451012