|
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
| Home page | About |
Theoretical modeling of radiative proton capture in light nuclei of the carbon-nitrogen-oxygen cycle using a direct capture approach
A. A. Alzubadi*, A. H. Hamade
Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq
*Corresponding author. E-mail address:
ali.abdullatif@sc.uobaghdad.edu.iq
Abstract: The radiative proton capture reactions 12C(p, γ)13N, 14N(p, γ)15O, and 17O(p, γ)18F have been investigated within the framework of a direct capture model employing Woods - Saxon potentials. These reactions play a fundamental role in hydrogen burning through the carbon-nitrogen-oxygen (CNO) cycles in stellar interiors. Nuclear structure inputs constrained by experimental data have been used to calculate astrophysical S factors and scattering phase shifts. The calculated results show good agreement with available measurements, accurately reproducing both non-resonant contributions and narrow resonance features in the 12C(p, γ)13N and 17O(p, γ)18F reactions. The rate-limiting behavior of the 14N(p, γ)15O reaction in the CNO-I cycle has also been described with satisfactory precision. The findings provide improved inputs for stellar nucleosynthesis modeling and contribute to the understanding of low-energy nuclear capture processes relevant to astrophysics.
Keywords: radiative proton capture, CNO nuclear cycle, astrophysical S factor, direct capture model, stellar nucleosynthesis.
References:1. G.R. Satchler. Direct Nuclear Reactions (Oxford, Oxford University Press, 1983) 833 p. Google books
2. K.S. Krane. Introductory Nuclear Physics. 3rd ed. (New York, John Wiley &Sons, 1991) 864 p. https://www.wiley.com/en-us/Introductory+Nuclear+Physics%2C+3rd+Edition-p-9780471805533
3. C. Iliadis. Nuclear Physics of Stars. 2nd ed. (Weinheim-Berlin, Wiley-VCH Verlag GmbH & Co. KGaA, 2015) 654 p. https://doi.org/10.1002/9783527692668
4. D.D. Clayton. Principles of Stellar Evolution and Nucleosynthesis (Chicago, University of Chicago Press, 1983) 634 p. https://press.uchicago.edu/ucp/books/book/chicago/P/bo24324962.html
5. H.A. Bethe. Energy production in stars. Phys. Rev. 55 (1939) 434. https://doi.org/10.1103/PhysRev.55.434
6. F.-K. Thielemann, M. Arnould, J.W. Truran. In: Advances in Nuclear Astrophysics. E. Vangioni-Flam et al. (Eds.) (Gif-sur-Yvette, Editions Frontieres, 1987) p. 525.
7. C.E. Rolfs, W.S. Rodney. Cauldrons in the Cosmos: Nuclear Astrophysics (Chicago, University of Chicago Press 1988) 561 p. Google books
8. J.N. Bahcall, R.K. Ulrich. Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60 (1988) 297. https://doi.org/10.1103/RevModPhys.60.297
9. R.E. Azuma et al. AZURE: An R-matrix code for nuclear astrophysics. Phys. Rev. C 81 (2010) 045805. https://doi.org/10.1103/PhysRevC.81.045805
10. A. Koning, S. Hilaire, S. Goriely. TALYS-1.95: A Nuclear Reaction Program. User Manual (The Netherlands, Petten, NRG, 2023) 562 p. https://nds.iaea.org/talys/
11. H. Schatz et al. rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 294 (1998) 167. https://doi.org/10.1016/S0370-1573(97)00048-3
12. C. Iliadis et al. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions. Nucl. Phys. A 841 (2010) 31. https://doi.org/10.1016/j.nuclphysa.2010.04.009
13. R. Longland et al. Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions. Nucl. Phys. A 841 (2010) 1. https://doi.org/10.1016/j.nuclphysa.2010.04.008
14. G. Gangopadhyay, C. Lahiri. Recent advances in some nuclear properties relevant to the astrophysical r-process. Eur. Phys. J. Spec. Top. 233 (2024) 2885. https://doi.org/10.1140/epjs/s11734-024-01215-1
15. T. Rauscher, F.-K. Thielemann. Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75 (2000) 1. https://doi.org/10.1006/adnd.2000.0834
16. M. Dalvand, H. Khalili. Electromagnetic transition strengths on the S factor for radiative capture proton by 17O. Preprint Platform (2023) 1. https://doi.org/10.21203/rs.3.rs-2715997/v1
17. R.A. Radhi, A.A. Alzubadi. Study the nuclear form factors of low-lying excited states in 7Li nucleus using the shell model with Skyrme effective interaction. Few-Body Syst. 60 (2019) 57. https://doi.org/10.1007/s00601-019-1524-x
18. A.A. Alzubadi, N.F. Latooffi, R.A. Radhi. Shell model and Hartree-Fock calculations for some exotic nuclei. Int. J. Mod. Phys. E 24 (2015) 1550099. https://doi.org/10.1142/S0218301315500998
19. C.D. Nesaraja et al. Ratio of S factors for (p, γ) reactions on 12C and 13C at astrophysically relevant energies. Phys. Rev. C 64 (2001) 065804. https://doi.org/10.1103/PhysRevC.64.065804
20. U. Schröder et al. Stellar reaction rate of 14N(p, γ)15O and hydrogen burning in massive stars. Nucl. Phys. A 467 (1987) 240. https://doi.org/10.1016/0375-9474(87)90528-8
21. J.R. Newton et al. Measurement of 17O(p, γ)18F between the narrow resonances at Elabr = 193 and 519 keV. Phys. Rev. C 81 (2010) 045801. https://doi.org/10.1103/PhysRevC.81.045801
22. A. Formicola et al. Astrophysical S factor of 14N(p, γ)15O. Phys. Lett. B 591 (2004) 61. https://doi.org/10.1016/j.physletb.2004.03.092
23. R.E. Pixley. The Reaction Cross Section of Nitrogen-14 for Protons Between 220 and 600 keV. Ph.D. thesis. (California Institute of Technology, Pasadena, 1957).