|
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
| Home page | About |
Consequences of long-term exposure to ionizing radiation on the hematopoietic system of fish in the water bodies of the Chornobyl Exclusion Zone
N. A. Pomortseva1,*, D. I. Gudkov1, N. Ê. Rodionova2, O. Ye. Kaglyan1
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
natapomorceva@gmail.com
Abstract: The hematological parameters of the common rudd Scardinius erythrophthalmus, roach Rutilus rutilus, perch Perca fluviatilis and Prussian carp Carassius gibelio from the most radionuclide-contaminated water bodies of the Chornobyl Exclusion Zone were analyzed. Data on changes in the absolute number and relative composition of leukocytes, as well as morphological disorders of erythrocytes in the peripheral blood of fish in the absorbed dose rate gradient of 5.1 - 84.5 μGy/h are presented. In control water bodies, radiation doses did not exceed 0.07 μGy/h. At current absorbed dose rates of up to 30 - 40 μGy/h, mostly reactive compensatory changes were registered in the blood of fish with an increase in the content of leukocytes due to the lymphocytic and granulocytic fractions. At higher doses, deterioration of the state of hematopoiesis with a decrease in the content of leukocytes and significant changes in leukograms were noted. It was established that with an increase in the absorbed dose rate, the number of morphological disorders and pathological changes in erythrocytes increases.
Keywords: Chornobyl Exclusion Zone, radionuclide contamination, fish, absorbed dose rate, Scardinius erythrophthalmus, Rutilus rutilus, Perca fluviatilis, Carassius gibelio, hematopoietic system, leukocyte formula, morphological disorders of erythrocytes.
References:1. A.N. Marei. Sanitary Protection of Water Bodies from Radioactive Contamination (Moskva: Atomizdat, 1976) 224 p. (Rus)
2. I.A. Shekhanova. Radioecology of Fish (Moskva: Vysshaya Shkola, 1983) 208 p. (Rus)
3. G.S. Shleifer, I.A. Shekhanova. Influence of ionizing radiation on some factors of fish immunity. In: Radioecology of Animals: Proceedings of the First All-Union Conference, Moskva, January 24 - 27, 1977 (Moskva: Nauka; 1977) p. 93. (Rus)
4. D. Gudkov et al. Aquatic plants and animals in the Chernobyl Exclusion Zone: Effects of long-term radiation exposure on different levels of biological organization. In: V. Korogodina et al. (Eds.) Genetics, Evolution and Radiation (Cham: Springer, 2017) ð. 287. https://doi.org/10.1007/978-3-319-48838-7_24
5. A. Lerebours et al. Impact of environmental radiation on the health and reproductive status of fish from Chernobyl. Environ. Sci. Technol. 52 (2018) 9442. https://doi.org/10.1021/acs.est.8b02378
6. D.I. Gudkov et al. The main radionuclides and dose formation in fish of the Chernobyl NPP exclusion zone. Radiat. Biol. Radioecol. 48 (2008) 48.
7. D.I. Gudkov et al. Dynamics of the content and distribution of the main dose forming radionuclides in fishes of the exclusion zone of the Chernobyl NPS. Hydrobiol. J. 44 (2008) 87. https://doi.org/10.1615/HydrobJ.v44.i5.100
8. O.Ye. Kaglyan et al. Strontium-90 in fish from the lakes of the Chernobyl Exclusion Zone. Radioprotection 44 (2009) 945. https://doi.org/10.1051/radiopro/20095169
9. O.Ye. Kaglyan et al. Radionuclides in the indigenous fish species of the Chernobyl exclusion zone. Nucl. Phys. At. Energy 13 (2012) 306. (Rus) https://doi.org/10.15407/jnpae2012.03.306
10. D.I. Gudkov et al. The distribution of the radionuclides in the main components of lake ecosystems within the Chernobyl NPP exclusion zone. Radiat. Biol. Radioecol. 45 (2005) 271.
11. D.I. Gudkov et al. 90Sr, 137Cs, 238Pu, 239+240Pu, and 241Am in the components of aquatic ecosystems of the Krasnenskaya floodplain of the Pripyat river. Hydrobiol. J. 41 (2005) 75. https://doi.org/10.1615/HydrobJ.v41.i3.80
12. O.Ye. Kaglyan et al. Changes in radiation exposure rate of fish of the cooling pond of the Chornobyl NPS and Lake Azbuchyn after water level lowering. Hydrobiol. J. 59 (2023) 96. https://doi.org/10.1615/HydrobJ.v59.i2.70
13. A.Y. Kaglyan et al. Fish of the Chernobyl exclusion zone: Modern levels of radionuclide contamination and radiation doses. Hydrobiol. J. 55 (2019) 81. https://doi.org/10.1615/HydrobJ.v55.i5.80
14. A.Ye. Kaglyan et al. The absorbed dose rate of external exposure to representatives of ichthyofauna of lakes in the Chornobyl Exclusion Zone. Nucl. Phys. At. Energy 25 (2024) 141. (Ukr) https://doi.org/10.15407/jnpae2024.02.141
15. V.V. Belyaev et al. Reconstruction of the absorbed dose of ionizing radiation in fish of the Glyboke Lake over the early phase of the Chernobyl accident. Hydrobiol. J. 57 (2021) 86. https://doi.org/10.1615/HydrobJ.v57.i4.80
16. V.V. Belyaev et al. Radiation dose reconstruction for higher aquatic plants and fish in Glyboke Lake during the early phase of the Chernobyl accident. J. Environ. Radioact. 263 (2023) 107169. https://doi.org/10.1016/j.jenvrad.2023.107169
17. I.I. Kryshev. Radioactive contamination of aquatic ecosystems following the Chernobyl accident. J. Environ. Radioact. 27 (1995) 207. https://doi.org/10.1016/0265-931X(94)00042-U
18. M.I. Kuzmenko et al. Technogenic Radionuclides in Freshwater Ecosystems (Kyiv: Naukova Dumka, 2010) 262 p. (Ukr)
19. A.Ye. Kaglyan et al. Dynamics of specific activity of 90Sr and 137Cs in representatives of ichthyofauna of Chornobyl Exclusion Zone. Nucl. Phys. At. Energy 22 (2021) 62. (Ukr) https://doi.org/10.15407/jnpae2021.01.062
20. I.A. Shekhanova. Radioecological aspects of surface water protection in the peaceful use of nuclear energy. In: A.I. Ilyenko (Ed.). Problems and Tasks of Animal Radioecology (Moskva: Nauka, 1980) p. 135. (Rus)
21. V.R. Mikryakov et al. Comparative characteristics of leucocytes compositions in the crucian carp Carassius carassius (Cyprinidae) from the waterbodies of the Chernobyl exclusion zone and from the Rybinsk reservoir. J. Ichthyol. 53 (2013) 753. https://doi.org/10.1134/S0032945213060076
22. E.A. Pryakhin et al. Assessment of erythrocyte pathology level in peripheral blood of roach (Rutilus rutilus L.) from water bodies with different levels of radioactive contamination. Radiat. Biol. Radioecol. 52 (2012) 616. (Rus)
23. K. Al-Sabti, C.D. Metcalfe. Fish micronuclei for assessing genotoxicity in water. Mutat. Res./Genet. Toxicol. 343 (1995) 121. https://doi.org/10.1016/0165-1218(95)90078-0
24. S. Anbumani, M.N. Mohankumar. Gamma radiation induced micronuclei and erythrocyte cellular abnormalities in the fish Catla catla. Aquat. Toxicol. 122-123 (2012) 125. https://doi.org/10.1016/j.aquatox.2012.06.001
25. N.A. Pomortseva, D.². Gudkov. Effect of additional acute irradiation on cytomorphological abnormalities of erythrocytes of the Prussian carp (Carassius gibelio Bloch) from water body contaminated with radionuclides. Probl. Radiat. Med. Radiobiol. 24 (2019) 270. https://doi.org/10.33145/2304-8336-2019-24-270-283
26. T.G. Sazykina, A.I. Kryshev. EPIC database on the effects of chronic radiation in fish: Russian/FSU data. J. Environ. Radioact. 68(1) (2003) 65. https://doi.org/10.1016/S0265-931X(03)00030-4
27. K. Beaugelin-Seiller, C. Della-Vedova, J. Garnier-Laplace. Transforming acute ecotoxicity data into chronic data: A statistical method to better inform the radiological risk for nonhuman species. Environ. Sci. Technol. 54(19) (2020) 12376. https://doi.org/10.1021/acs.est.0c03932
28. K. Beaugelin-Seiller, C. Della-Vedova, J. Garnier-Laplace. Is non-human species radiosensitivity in the lab a good indicator of that in the field? Making the comparison more robust. J. Environ. Radioact. 211 (2020) 105870. https://doi.org/10.1016/j.jenvrad.2018.12.012
29. A.A. Yavnyuk et al. Fluctuating asymmetry of zebra mussel (Dreissena polymorpha Pall.) and floating pondweed (Potamogeton natans L.) in water bodies within the Chernobyl accident Exclusion Zone. Radioprotection 44(5) (2009) 475. https://doi.org/10.1051/radiopro/20095088
30. ERICA Assessment Tool 1.0. The integrated approach seeks to combine exposure/dose/effect assessment with risk characterization and managerial considerations. https://www.erica-tool.com/
31. V.D. Romanenko (Ed.). Methods of Hydroecological Studies of Surface Waters. National Academy of Sciences of Ukraine, Institute of Hydrobiology (Kyiv: LOGOS, 2006) 408 p. (Ukr) https://old.nas.gov.ua/EN/Book/Pages/default.aspx?BookID=0000001210
32. L.D. Zhiteneva, T.G. Poltavtseva, O.A. Rudnitskaya. Atlas of Normal and Pathologically Altered Blood Cells of Fishes (Rostov-on-Don: Rostov Book Publishing, 1989) 112 p. (Rus)
33. O.N. Davydov, Y.D. Temnikhanov, L.Ya. Kurovskaya. Fish Blood Pathology (Kyiv: INCOS, 2006) 206 p. (Rus)
34. V.V. Belyaev et al. Dynamics of irradiation dose formation in freshwater fish after 90Sr and 137Cs single entry in a reservoir. Hydrobiol. J. 50(5) (2014) 111. (Rus) Article
35. D.I. Gudkov et al. Peculiarities of radionuclide distribution in the main components of aquatic ecosystems within the Chernobyl accident exclusion zone. In: G.N. Nairne (Ed.). Aquatic Ecosystems Research Trend (New York: Nova Science Publishers, Inc., 2012) p. 383. Google books
36. D.I. Gudkov et al. Radiation-induced cytogenetic and hematologic effects on aquatic biota within the Chernobyl exclusion zone. J. Environ. Radioact. 151 (2016) 438. https://doi.org/10.1016/j.jenvrad.2015.09.004
37. D.J. Weiss, K.J. Wardrop (Eds.). Schalm’s Veterinary Hematology. 6th ed. (Oxford: Blackwell Publishing Ltd., 2010) 1232 ð. Google books
38. G. Liu et al. Modulation of neutrophil development and homeostasis. Curr. Mol. Med. 13 (2013) 1270. http://dx.doi.org/10.2174/15665240113139990062
39. N. Strydom, S.M. Rankin. Regulation of circulating neutrophil numbers under homeostasis and in disease. J. Innate Immun. 5(4) (2013) 304. https://doi.org/10.1159/000350282
40. O.P. Vasilyev, A.I. Sherstnev. Effect of low concentrations of strontium-90 on hematopoiesis in fish. Trudy AtlantNIRO 21 (1969) 192. (Rus)
41. M. Ingram. Hematological principles for assessing the degree of radiation injury: Low doses, chronic exposure, and delayed effects. Manual of Radiation Hematology. Joint publication of the International Atomic Energy Agency and the World Health Organization (Moskva: Medicina; 1974) 221 p. (Rus)
42. S.A. Killman. Effect of radiation on the myeloid cell renewal system. In: Manual of Radiation Hematology (Moskva: Medgiz, 1974) p. 77. (Rus)
43. E.A. Zherbin, A.B. Chukhlovin. Radiation Hematology (Moskva: Meditsina, 1989) 176 p. (Rus)
44. I.K. Petrovich. Changes in the blood picture of animals in the long-term period after the introduction of radioactive substances into the organism. In: Influence of Radioactive Strontium on the Living Organism (Moskva: Medgiz, 1961) 104 p. (Rus)
45. L.B. Pinchuk, Ya.I. Serkiz, N.K. Rodionova. State of bone marrow hematopoiesis in rats. Radiat. Biol. Radioecol. 31 (1991) 635. (Rus)
46. N.T. Ivanova. Atlas of Fish Blood Cells (Moskva: Legkaya i Pishchevaya Promyshlennost, 1983) 150 p. (Rus)
47. A.V. Ilyukhin et al. Cytokinetics and Morphology of Hematopoiesis Under Chronic Irradiation (Moskva: Meditsina, 1982) 136 p. (Rus)
48. L.Kh. Garkavi, E.B. Kvakina, M.A. Ukolova. Adaptive Reactions and Organism Resistance (Rostov-on-Don: Rostov Book Publishing, 1977) 224 p. (Rus)
49. A.I. Lypska et al. Pathological and compensatory reactions in the blood system of small rodents exposed to chronic low dose ionizing radiation. Nucl. Phys. At. Energy 25(4) (2024) 379. (Ukr) https://doi.org/10.15407/jnpae2024.04.379
50. N. Riabchenko et al. Transformation of the Chornobyl NPP cooling pond: radioecological situation and its impact on the blood system of small rodents. Int. J. Radiat. Biol. (2025) 1. https://doi.org/10.1080/09553002.2025.2505529
51. E.P. Kronkait, T.J. Khali. Clinical aspects of acute radiation hematology. In: Manual of Radiation Hematology (Moskva: Medgiz, 1974) p. 144. (Rus)
52. D.I. Gudkov et al. Radionuclides in components of aquatic ecosystems of the Chernobyl accident restriction zone. In: E.B. Burlakova, V.I. Naidich (Eds.). 20 Years After the Chernobyl Accident: Past, Present and Future (New York: Nova Science Publishers, Inc., 2007) 358 p. https://www.amazon.com/20-Years-After-Chernobyl-Accident/dp/1600212492?utm_source=chatgpt.com