Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 3, pages 210-216.
Section: Nuclear Physics.
Received: 18.02.2025; Accepted: 25.08.2025; Published online: 26.09.2025.
PDF Full text (en)
https://doi.org/10.15407/jnpae2025.03.210

Measurement of excitation function in the 16O + 107Ag system at energies above the Coulomb barrier

Diwanshu1,*, A. Kumar1, B. Rohila1,2, C. Sharma1, Subodh1, P. S. Rawat3, A. Pandey3, K. Katre4, H. Arora5, U. S. Ghosh4, Yashraj4, I. Sharma6, H. P. Sharma6, S. K. Chamoli3, S. Kumar3, R. P. Singh4, S. Muralithar4

1 Department of Physics, Panjab University, Chandigarh, India
2 Department of Physics, Maitreyi College, University of Delhi, New Delhi, India
3 Department of Physics and Astrophysics, University of Delhi, New Delhi, India
4 Inter University Accelerator Centre, New Delhi, India
5 Central Michigan University, Michigan, USA
6 Department of Physics, Banaras Hindu University, Varanasi, India


*Corresponding author. E-mail address:
diwanshusharma96@gmail.com

Abstract: The decay mechanism of the highly excited compound nucleus 123Cs populated via fusion evaporation reaction of 16O and 107Ag is studied. De-excitation of the compound nucleus via evaporation of p, n, and α particles leads to a population of several neutron-deficient residual nuclei. The excitation function for the 16O + 107Ag reaction has been determined experimentally in the energy range 71 - 80 MeV above the Coulomb barrier. The experimental results have been analyzed within the framework of statistical codes PACE4 and CASCADE.

Keywords: excitation function, compound nucleus, PACE4, CASCADE.

References:

1. P.P. Singh et al. Role of high l values in the onset of incomplete fusion. Phys. Rev. C 80 (2009) 064603. https://doi.org/10.1103/PhysRevC.80.064603

2. P.P. Singh et al. Observation of complete- and incomplete-fusion components in 159Tb, 169Tm(16O,x) reactions: Measurement and analysis of forward recoil ranges at E/A ≈ 5 - 6 MeV. Eur. Phys. J. A 34 (2007) 29. https://doi.org/10.1140/epja/i2007-10487-1

3. D.J. Parker et al. Complete and incomplete fusion in 12C + 51V at E(12C) = 36 - 100 MeV from analysis of recoil range and light particle measurements. Phys. Rev. C 30 (1984) 143. https://doi.org/10.1103/PhysRevC.30.143

4. D.R. Zolnowski et al. Evidence for "massive transfer" in heavy-ion reactions on rare-earth targets. Phys. Rev. Lett. 41 (1978) 92. https://doi.org/10.1103/PhysRevLett.41.92

5. E.A. Bakkum et al. Impact parameter dependence of incomplete fusion between 10 and 20 MeV/nucleon. Phys. Rev. C 39 (1989) 2094. https://doi.org/10.1103/PhysRevC.39.2094

6. B. Fornal et al. Possible dynamic effects in the particle decay of 59Cu compound nuclei. Phys. Rev. C 40 (1989) 664. https://doi.org/10.1103/PhysRevC.40.664

7. R.J. Charity. A systematic description of evaporation spectra for light and heavy compound nuclei. Phys. Rev. C 82 (2010) 014610. https://doi.org/10.1103/PhysRevC.82.014610

8. S. Kundu et al. Deformation in 28Si produced via the 16O + 12C reaction. Phys. Rev. C 87 (2013) 024602. https://doi.org/10.1103/PhysRevC.87.024602

9. A. Gavron. et al. Neutron emission in 12C + 158Gd and 13C + 157Gd reactions between 8 and 12 MeV/nucleon. Phys. Rev. C 24 (1981) 2048. https://doi.org/10.1103/PhysRevC.24.2048

10. A. Gavron. Statistical model calculations in heavy ion reactions. Phys. Rev. C 21 (1980) 230. https://doi.org/10.1103/PhysRevC.21.230

11. F. Pühlhofer. On the interpretation of evaporation residue mass distributions in heavy-ion induced fusion reactions. Nucl. Phys. A 280 (1977) 267. https://doi.org/10.1016/0375-9474(77)90308-6

12. S. Muralithar et al. Indian National Gamma Array at Inter University Accelerator Centre, New Delhi. Nucl. Instrum. Methods A 622 (2010) 281. https://doi.org/10.1016/j.nima.2010.06.200

13. Inter-University Accelerator Centre (IUAC). Data Support Labs. http://www.iuac.res.in/data-support-lab

14. W. Hauser, H. Feshbach. The inelastic scattering of neutrons. Phys. Rev. 87 (1952) 336. https://doi.org/10.1103/PhysRev.87.366

15. C.M. Perey, F.G. Perey. Compilation of phenomenological optical-model parameters 1954-1975. At. Data Nucl. Data Tables 17 (1976) 1. https://doi.org/10.1016/0092-640X(76)90007-3

16. R. Bass. Nucleus-nucleus potential deduced from experimental fusion cross sections. Phys. Rev. Lett. 39 (1977) 265. https://doi.org/10.1103/PhysRevLett.39.265

17. S.K. Kataria, V.S. Ramamurthy, S.S. Kapoor. Semiempirical nuclear level density formula with shell effects. Phys. Rev. C 18 (1978) 549. https://doi.org/10.1103/PhysRevC.18.549

18. D. Wilmore, P.E. Hodgson. The calculation of neutron cross-sections from optical potentials. Nucl. Phys. 55 (1964) 673. https://doi.org/10.1016/0029-5582(64)90184-1

19. J.R. Huizenga, G. Igo. Theoretical reaction cross sections for alpha particles with an optical model. Nucl. Phys. 29 (1962) 462. https://doi.org/10.1016/0029-5582(62)90196-7

20. H. Feldmeier. Transport phenomena in dissipative heavy-ion collisions: the one-body dissipation approach. Rep. Prog. Phys. 50 (1987) 915. https://doi.org/10.1088/0034-4885/50/8/001

21. N.K. Rai, V. Mishra, A. Kumar. Effect of energy variation on the dissipative evolution of the system in heavy-ion fusion reactions. Phys. Rev. C 98 (2018) 024626. https://doi.org/10.1103/PhysRevC.98.024626

22. K. Loewenich et al. In-beam spectroscopy of 120Xe. Nucl. Phys. A 460 (1986) 361. https://doi.org/10.1016/0375-9474(86)90132-6

23. C.-B. Moon et al. Level structure of 120Cs. Nucl. Phys. A 696 (2001) 45. https://doi.org/10.1016/S0375-9474(01)01118-6

24. H.C. Scraggs et al. High spin study of 119Xe. Nucl. Phys. A 640 (1998) 337. https://doi.org/10.1016/S0375-9474(98)00454-0

25. Y. Liang et al. High-spin spectroscopy of 119,121I: Prolate and oblate shape coexistence. Phys. Rev. C 45 (1992) 1041. https://doi.org/10.1103/PhysRevC.45.1041