Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 2, pages 193-199.
Section: Engineering and Methods of Experiment.
Received: 31.12.2024; Accepted: 24.05.2025; Published online: 24.06.2025.
PDF Full text (ua)
https://https://doi.org/10.15407/jnpae2025.02.193

Study of the analog response of the silicon tracking system sensors of the CBM experiment using the LTspice package

O. O. Kshyvanskyi1,*, V. M. Pugatch1, M. A. Teklishyn2

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany


*Corresponding author. E-mail address: kshyvanskyi.oleksandr@gmail.com

Abstract: A method for simulating the functioning of analog electronics of detector modules based on double-sided microstrip silicon sensors of the Silicon Tracking System (STS) of the CBM experiment has been developed. The method uses the LTspice analog electronic circuit simulator. It provides the ability to simulate the signal charge and its distribution between the detector components, as well as the frequency response of the STS detector module. The simulation results indicate the suitability of this method for validating the characteristics, optimizing the parameters, and improving the operation of the STS modules, and the possibility of using it for monitoring the STS during the operation of the CBM experiment.

Keywords: CBM experiment, Silicon Tracking System, double-sided microstrip detectors, analog electronics simulation, quality assessment of detector modules.

References:

1. T. Ablyazimov et al. Challenges in QCD matter physics - The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 53 (2017) 60. https://doi.org/10.1140/epja/i2017-12248-y

2. B. Friman et al. (Eds.) The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments. Lecture Notes in Physics 814 (Springer, 2011). https://doi.org/10.1007/978-3-642-13293-3

3. The CBM Collaboration. J. Heuser et al. (Eds.) Technical Design Report for the CBM. Silicon Tracking System (STS). GSI Report 2013-4 (Darmstadt, GSI, 2013) 175 p. https://repository.gsi.de/record/54798/files/GSI-Report-2013-4.pdf

4. The CBM Collaboration. Technical Design Report for the CBM. Superconducting Dipole Magnet (Darmstadt, GSI, 2013) 87 p. https://repository.gsi.de/record/109025/files/CBM_magnet_TDR_31_10_2013-nc.pdf

5. I. Panasenko. Development of Electrical Quality Assurance Procedures and Methods for the Silicon Tracking System of the CBM Experiment. PhD Thesis (Tubingen, University of Tübingen, 2023). https://inspirehep.net/literature/2719583

6. I. Sorokin. Characterization of Silicon Microstrip Sensors, Front-End Electronics, and Prototype Tracking Detectors for the CBM Experiment at FAIR. PhD Thesis (Frankfurt am Main, Johann Wolfgang Goethe University in Frankfurt am Main, 2013) 181 p. https://core.ac.uk/download/pdf/52575199.pdf

7. H. Malygina. Hit Reconstruction for the Silicon Tracking System of the CBM Experiment. PhD Thesis (Frankfurt am Main, Johann Wolfgang Goethe University in Frankfurt am Main, 2018) 162 p. https://indico.gsi.de/event/7235/contributions/32684/attachments/23549/29499/Malygina_dissertation_printed.pdf

8. W. Zubrzycka. Low Noise Integrated Circuits for Radiation Imaging with High-Speed Digital Interface. PhD Thesis (Kraków, AGH University of Science and Technology, 2020) 12 p. https://www.eaiib.agh.edu.pl/wp-content/uploads/2021/02/Zubrzycka_2021.02.16-Autoreferat_WZ.pdf

9. I. Selyuzhenkov, A. Toia (Eds.). CBM Progress Report 2016 (Darmstadt: GSI, 2017) 223 p. https://repository.gsi.de/record/201318

10. C. Simons. STS Module and Ladder EDR: Questions and Answers. Technical report. FAIR/GSI CBM, 2020.

11. K. Kasinski, R. Szczygiel, W. Zabolotny. Back-end and interface implementation of the STS-XYTER2 prototype ASIC for the CBM experiment. J. Instrum. 11 (2016) C11018. https://doi.org/10.1088/1748-0221/11/11/C11018

12. M.A. Protsenko. The Technology for the Production of Radiation Detector Modules. Thesis for the degree of Candidate of Techn. Sciences (Kharkiv, Kharkiv National University of Radioelectronics, 2017). https://uacademic.info/ua/document/0418U000549

13. D. Biolek, M. Di Ventra, Y.V. Pershin. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4) (2013) 945. https://www.radioeng.cz/fulltexts/2013/13_04_0945_0968.pdf

14. R. Rodríguez et al. Functional characterization of modules for the Silicon Tracking System of the CBM experiment. Nucl. Instrum. Methods A 1058 (2024) 168813. https://doi.org/10.1016/j.nima.2023.168813

15. O.M. Rodríguez. Characterization and commissioning of the front-end electronics for the Silicon Tracking System of the CBM experiment. PhD Thesis (Frankfurt am Main, Johann Wolfgang Goethe University in Frankfurt am Main, 2023) 137 p. https://indico.gsi.de/event/17214/contributions/72585/attachments/44124/62104/PhD_Dissertation_Osnan_Maragoto_Rodriguez.pdf