Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 2, pages 162-170.
Section: Plasma Physics.
Received: 21.10.2024; Accepted: 24.05.2025; Published online: 24.06.2025.
PDF Full text (en)
https://https://doi.org/10.15407/jnpae2025.02.162

Study of light ions acceleration in a diode with a solid target and registration of nuclear proton-boron reaction products generated in the plasma diode

A. A. Gurin1,*, A. S. Adamenko2, M. M. Kuzmenko2, I. O. Pashchenko2, V. A. Levchenko2

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Electrodynamics Laboratory “Proton-21” Ltd, Kyiv, Ukraine


*Corresponding author. E-mail address: aagurin@ukr.net

Abstract: The results of proton fluxes registration and the nuclear reactions (p + 11B > 3α) they induce on boron-containing targets in a plasma diode pinch, generated by irradiation of the anode target with a relativistic electron beam, are presented. The dominance of protons as the fastest component of the explosive plasma fronts is observed, with energies exceeding those determined by the diode voltage. Alpha particles as products of nuclear reactions, are detected as emitted directly by the hot zone of the pinch when the anode target contains boron, as well as during the interaction of protons with the boron-containing screen behind the cathode, regardless of the anode target composition.

Keywords: self-magnetic pinch diode, plasma diode, micropinch, protons, alpha particles, collective acceleration, nuclear reaction.

References:

1. W.H. Bostick, V. Nardi, O.S.F. Zucker. Energy Storage, Compression, and Switching (New York, Springer, 1976) 537 ð. https://doi.org/10.1007/978-1-4684-2214-6

2. A.A. Gurin et al. Proton- and α-radiation of the micro-pinch with the boron-containing target. Acta Polytech. 53(2) (2013) 165. https://doi.org/10.14311/1747

3. T. Westermann. Space charge effects in a self-magnetically insulated pinch diode. Nucl. Instrum. Methods A 290(2-3) (1990) 529. https://doi.org/10.1016/0168-9002(90)90573-O

4. G. Raboisson et al. Asterix, a high intensity x-ray generator. In: 7th Pulsed Power Conference, Monterey, CA, USA, 11 - 14 June 1989, p. 567. https://doi.org/10.1109/PPC.1989.767549

5. L.I. Rudakov, A.S. Kingsep, A.V. Gordeev. Some aspects of magnetic acceleration of radiating plasma shell. In: BEAMS 88: 7th International Conference on High Power Particle Beams, Karlsruhe, Germany, 4 - 7 July 1988, p. 249.

6. N. Bennett et al. The impact of plasma dynamics on the self-magnetic-pinch diode impedance. Phys. Plasmas 22 (2015) 033113. https://doi.org/10.1063/1.4916062

7. M.G. Mazarakis et al. Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current. Phys. Plasmas 25 (2018) 043508. https://doi.org/10.1063/1.5009014

8. N. Bruner et al. Anode plasma dynamics in the self-magnetic-pinch diode. Phys. Rev. ST Accel. Beams 14 (2011) 024401. https://doi.org/10.1103/PhysRevSTAB.14.024401

9. D.R. Welch et al. Dynamics of the super pinch electron beam and fusion energy perspective. Phys. Rev. Accel. Beams 24 (2021) 120401. https://doi.org/10.1103/PhysRevAccelBeams.24.120401

10. V.A. Ryzhkov et al. Determination of energy and fluences of protons collectively accelerated in a luce diode accelerator. Tech. Phys. Lett. 45 (2019) 718. https://doi.org/10.1134/S1063785019070265

11. R.B. Miller. An Introduction to the Physics of Intense Charged Particle Beams (New York, Springer, 1982) 349 p. https://doi.org/10.1007/978-1-4684-1128-7

12. L.I. Rudakov, M.V. Babykin, A.V. Gordeev. Generation and Focusing of High-Current Relativistic Electron Beams (Moskva: Energoatomizdat, 1990) 279 p. (Rus)

13. A.V. Gordeev, A.S. Kingsep, L.I. Rudakov. Electron magnetohydrodynamics. Phys. Rep. 243(5) (1994) 215. https://doi.org/10.1016/0370-1573(94)90097-3

14. L. Rudakov. Magnetodynamics of multicomponent plasma. Phys. Plasmas 2(8) (1995) 2940. https://doi.org/10.1063/1.871193

15. S.V. Adamenko et al. Track measurements of fast particle streams in pulsed discharge explosive plasma. Radiat. Meas. 40(2-6) (2005) 486. https://doi.org/10.1016/j.radmeas.2005.04.010

16. Yu.K. Kurilenkov, S.N. Andreev. On scaling of proton-boron fusion power in a nanosecond vacuum discharge. Front. Phys., Fusion Plasma Phys. 12 (2024) 1440040. https://doi.org/10.3389/fphy.2024.1440040

17. E.J. Lerner et al. Focus fusion: Overview of progress towards p-B11 fusion with the dense plasma focus. J. Fusion Energy 42 (2023) 7. https://doi.org/10.1007/s10894-023-00345-z

18. G. Somogyi, S.A. Szalay. Track-diameter kinetics in dielectric track detectors. Nucl. Instrum. Methods 109(2) (1973) 211. https://doi.org/10.1016/0029-554X(73)90265-6