Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 2, pages 144-154.
Section: Nuclear Physics.
Received: 14.04.2025; Accepted: 24.05.2025; Published online: 24.06.2025.
PDF Full text (en)
https://https://doi.org/10.15407/jnpae2025.02.144

A comprehensive investigation of alpha decay fine structure in odd-odd and odd-even nuclei

R. Nithya Agnes1,*, G. M. C. V. Bai2, S. Selvakumar3, S. C. Vella Durai4

1 Department of Physics, St. John’s College, Palayamkottai, Tamil Nadu, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
2 Department of Physics, Government Arts College, Nagercoil, Tamil Nadu, Affiliated to
Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu India
3 Department of Physics, Department of Science and Humanities, Thamirabharani Engineering College, Thatchanallur, Tirunelveli, Tamil Nadu, India
4 PG and Research Department of Physics, Sri Paramakalayani College, Alwarkurichi, Tenkasi, Tamil Nadu, India


*Corresponding author. E-mail address: nithya.phy@stjohnscollege.edu.in

Abstract: We conducted a comprehensive investigation of the alpha decay fine structure in odd-even and odd-odd nuclei with atomic numbers between 95 and 101. Utilizing the cubic plus Yukawa plus exponential model, we considered the combined effects of Coulomb, centrifugal, and Yukawa plus exponential potentials as barriers for interacting fragments, supplemented by a cubic potential in the overlapping region. Our calculations of partial half-lives for alpha transitions to excited states demonstrated notable agreement with experimental data, yielding a standard deviation of 1.7671 for logarithmic half-lives. Furthermore, analysis of the fine structure revealed a linear correlation between the branching ratio and decay width in alpha decay for nuclei such as Americium, Berkelium, Einsteinium, and Mendelevium indicating a direct proportionality between these parameters.

Keywords: alpha decay, fine structure, decay energy, nuclei, Yukawa plus.

References:

1. C. Xu, Z. Ren. Branching ratios of α-decay to excited states of even-even nuclei. Nucl. Phys. A 778 (2006) 1. https://doi.org/10.1016/j.nuclphysa.2006.08.002

2. Z. Ren, D. Ni. Systematics of fine structure in the α decay of deformed odd-mass nuclei. J. Phys.: Conf. Ser. 569 (2014) 012039. https://doi.org/10.1088/1742-6596/569/1/012039

3. K.P. Santhosh, J.G. Joseph, B. Priyanka. Fine structure in the α-decay of odd-even nuclei. Nucl. Phys. A 877 (2012) 1. https://doi.org/10.1016/j.nuclphysa.2012.01.009

4. D. Ni, Z. Ren. Systematic calculation of fine structure in the α decay of deformed nuclei. J. Phys.: Conf. Ser. 381 (2012) 012055. https://doi.org/10.1088/1742-6596/381/1/012055

5. D.S. Delion, A. Dumitrescu. Systematics of the α-decay fine structure in even-even nuclei. At. Data Nucl. Data Tables 101 (2015) 1. https://doi.org/10.1016/j.adt.2014.09.001

6. V.Yu. Denisov, A.A. Khudenko. α-Decay half-lives, α-capture, and α-nucleus potential. At. Data Nucl. Data Tables 95 (2009) 815. https://doi.org/10.1016/j.adt.2009.06.003

7. M. Mirea. Fine structure of alpha decay from the time-dependent pairing equations. Eur. Phys. J. A 56 (2020) 151. https://doi.org/10.1140/epja/s10050-020-00163-3

8. D. Bucurescu, N.V. Zamfir. Fine structure of alpha decay of even-even trans-lead nuclei - an intriguing nuclear structure paradigm. J. Phys.: Conf. Ser. 413 (2013) 012010. https://doi.org/10.1088/1742-6596/413/1/012010

9. Y.Z. Wang et al. Properties of α-decay to ground and excited states of heavy nuclei. Eur. Phys. J. A 44 (2010) 287. https://doi.org/10.1140/epja/i2010-10948-4

10. V.Yu. Denisov, A.A. Khudenko. α decays to ground and excited states of heavy deformed nuclei. Phys. Rev. C 80 (2009) 034603. https://doi.org/10.1103/PhysRevC.80.034603

11. K.P. Santhosh, J.G. Joseph. Systematic studies on α-decay fine structure of odd-odd nuclei in the region 83 ≤ Z ≤ 101. Phys. Rev. C 86 (2012) 024613. https://doi.org/10.1103/PhysRevC.86.024613

12. D.S. Delion et al. Coupled channels description of the α-decay fine structure. J. Phys. G 45 (2018) 053001. https://doi.org/10.1088/1361-6471/aaac52

13. K.P. Santhosh, S. Sahadevan, J.G. Joseph. Alpha decay of even-even nuclei in the region 78 ≤ Z ≤ 102 to the ground state and excited states of daughter nuclei. Nucl. Phys. A 850 (2011) 34. https://doi.org/10.1016/j.nuclphysa.2010.12.002

14. K.P. Santhosh et al. Systematic study on the α-decay fine structure of even-odd nuclei in the range 84 ≤ Z ≤ 102. J. Phys. G 38 (2011) 075101. https://doi.org/10.1088/0954-3899/38/7/075101

15. G.M.C.V. Bai, R.N. Agnes. Theoretical studies on the fine structure of α decay for even-odd and even-even isotopes of Cm, Cf, Fm and No nuclei. Pramana 93 (2019) 39. https://doi.org/10.1007/s12043-019-1801-8

16. D. Lunney, J.M. Pearson, C. Thibault. Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75 (2003) 1021. https://doi.org/10.1103/RevModPhys.75.1021

17. N.P. Saeed Abdulla et al. Investigation of two-proton decay using modified formation probability. Nucl. Phys. At. Energy 25 (2024) 105. https://doi.org/10.15407/jnpae2024.02.105

18. H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992

19. H.G. de Carvalho, J.B. Martins, O.A.P. Tavares. Radioactive decay of radium and radon isotopes by 14C emission. Phys. Rev. C 34 (1986) 2261. https://doi.org/10.1103/PhysRevC.34.2261

20. M. Wang et al. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45 (2021) 030003. https://doi.org/10.1088/1674-1137/abddaf

21. P. Möller et al. Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109-110 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.002

22. V.I. Tretyak. Spontaneous double alpha decay: First experimental limit and prospects of investigation. Nucl. Phys. At. Energy 22 (2021) 121. https://doi.org/10.15407/jnpae2021.02.121

23. J.R. Nix. The normal modes of oscillation of a uniformly charged drop about its saddle-point shape. Ann. Phys. 41 (1967) 52. https://doi.org/10.1016/0003-4916(67)90199-6

24. O.M. Povoroznyk, O.K. Gorpinich. Experimental observation of neutron-neutron correlations in nucleus 6He from 3H(α, pα)nn reaction. Nucl. Phys. At. Energy 20 (2019) 357. https://doi.org/10.15407/jnpae2019.04.357

25. P. Möller, J.R. Nix, W.J. Swiatecki. Calculated fission properties of the heaviest elements. Nucl. Phys. A 469 (1987) 1. https://doi.org/10.1016/0375-9474(87)90083-2

26. D.N. Poenaru et al. Heavy cluster decay of trans-zirconium "stable" nuclides. Phys. Rev. C 32 (1985) 2198. https://doi.org/10.1103/PhysRevC.32.2198

27. X.D. Sun et al. Systematic study of α decay half-lives of doubly odd nuclei within the two-potential approach. Phys. Rev. C 95 (2017) 044303. https://doi.org/10.1103/PhysRevC.95.044303