![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Investigating nuclear deformation and longitudinal form factors in some fp-shell nuclei using the shell model and Hartree - Fock approximation
A. A. Alzubadi*, R. T. Mahdi
Department of Physics, College of Science,
University of Baghdad, Baghdad, Iraq
*Corresponding author. E-mail address:
ali.abdullatif@sc.uobaghdad.edu.iq
Abstract: The current study examined the nuclear deformation of certain Titanium and Chromium isotopes using the shell model and Hartree - Fock approximation within the fp-shell model space. The research calculated magnetic dipole and electric quadrupole moments, inelastic longitudinal Coulomb electroexcitation form factors, and low-lying excitation energies. The one-body transition density matrix elements for each transition in the fp-shell model space were computed using the FPD6 two-body effective interaction. The impact of varying the single-particle nuclear potentials, such as a harmonic oscillator, Woods - Saxon, and Skyrme - Hartree - Fock, was investigated in comparison with experimental data. Discrepancies with the experimental data led to adjustments in the two-body effective interactions or the model for calculating the effective charge of the nucleus for specific transitions. Furthermore, the study analyzed the potential energy surface and nuclear density distribution as a function of the quadrupole deformation parameter β2 using the Hartree - Fock + Bardeen - Cooper - Schrieffer method.
Keywords: shell model, fp-shell model space, Skyrme - Hartree - Fock, quadrupole deformation parameters, Hartree - Fock + Bardeen - Cooper - Schrieffer.
References:1. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. 1. Single-Particle Motion (New York, Benjamin, 1969). Google books
2. K.L.G. Heyde. The Nuclear Shell Model (Berlin, Heidelberg, Springer-Verlag, 1994). https://doi.org/10.1007/978-3-642-79052-2
3. W. Greiner, J.A. Maruh. Nuclear Models (Berlin, Springer, 1996). https://doi.org/10.1007/978-3-642-60970-1
4. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin, Heidelberg, New York, Springer-Verlag, 2004) 716 p. Google books
5. R.A. Radhi, A.A. Alzubadi, A.H. Ali. Calculations of the quadrupole moments for some nitrogen isotopes in p and psd shell model spaces using different effective charges. Iraqi J. Sci. 58 (2017) 878. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6050
6. R.A. Radhi, A.A. Alzubadi, N.S. Manie. Electromagnetic multipoles of positive parity states in 27Al by elastic and inelastic electron scattering. Nucl. Phys. A 1015 (2021) 122302. https://doi.org/10.1016/j.nuclphysa.2021.122302
7. G.W. Harby, A.A. Alzubadi. Calculation of the magnetic dipole and electric quadrupole moments of some sodium isotopes using shell model with Skyrme interaction. Iraqi J. Phys. 20 (2022) 40. https://doi.org/10.30723/ijp.v22i3.1004
8. T. Otsuka et al. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92 (2020) 015002. https://doi.org/10.1103/RevModPhys.92.015002
9. H. Sagawa, B.A. Brown. E2 core polarization for sd-shell single-particle states calculated with a skyrme-type interaction. Nucl. Phys. A 430 (1984) 84. https://doi.org/10.1016/0375-9474(84)90194-5
10. G. Neyens. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei. Rep. Prog. Phys. 66 (2003) 633. https://doi.org/10.1088/0034-4885/66/4/205
11. S. Raman, C.W. Nestor, Jr., P. Tikkanen. Transition probability from the ground to the first-excited 2+ state of even-even nuclides. Atomic Data Nucl. Data Tables 78 (2001) 1. https://doi.org/10.1006/adnd.2001.0858
12. K. Yamada. Ph.D. Thesis. Department of Physics, Rikkyo University, Toshima (Tokyo, Japan, 2004).
13. G. Mukherjee, S.K. Sharma. Inelastic electron scattering form factors for the excitation of 2+ states in some 2p-1f shell nuclei. Phys. Rev. C 29 (1984) 2101. https://doi.org/10.1103/PhysRevC.29.2101
14. R.B.M. Mooy, P.W.M. Glaudemans. Electron scattering form factors for fp-shell nuclei. Nucl. Phys. A 438 (1985) 461. https://doi.org/10.1016/0375-9474(85)90386-0
15. R.A. Radhi, A.A. Alzubadi. Study the nuclear form factors of low-lying excited states in 7Li nucleus using the shell model with Skyrme effective interaction. Few-Body Systems 60 (2019) 57. https://doi.org/10.1007/s00601-019-1524-x16. A.A. Alzubadi, N.F. Latooffi, R.A. Radhi. Shell model and Hartree-Fock calculations for some exotic nuclei. Int. J. Mod. Phys. E 24 (2015) 1550099. https://doi.org/10.1142/S0218301315500998
17. R.A. Radhi, A.A. Alzubadi, E.M. Rashed. Shell model calculations of inelastic electron scattering for positive and negative parity states in 19F. Nucl. Phys. A 947 (2016) 12. https://doi.org/10.1016/j.nuclphysa.2015.12.002
18. A.H. Ali, A.A. Alzubadi. Calculation magnetic dipole moments, electric quadrupole moments and form factors for some Ti isotopes. Phys. Scr. 95 (2020) 105306. https://doi.org/10.1088/1402-4896/abbaf4
19. R.A. Radhi, A.A. Alzubadi, A.H. Ali. Magnetic dipole moments, electric quadrupole moments, and electron scattering form factors of neutron-rich sd-pf cross-shell nuclei. Phys. Rev C 97 (2018) 064312. https://doi.org/10.1103/PhysRevC.97.064312
20. A.A. Alzubadi. Investigation of nuclear structure of 30-44S isotopes using spherical and deformed Skyrme-Hartree-Fock method. Indian J. Phys. 89 (2015) 619. https://doi.org/10.1007/s12648-014-0614-3
21. T. de Forest, Jr., J.D. Walecka. Electron scattering and nuclear structure. Adv. Phys. 15 (1966) 1. https://doi.org/10.1080/00018736600101254
22. B.A. Brown et al. Shell-model analysis of high-resolution data for elastic and inelastic electron scattering on 19F. Phys. Rev. C 32 (1985) 1127. https://doi.org/10.1103/PhysRevC.32.1127
23. A.A. Alzubadi, R.A. Allawi. Investigation of the magicity in some even-even Ca isotopes by using shell model and Hartree-Fock-Bogoliubov method. Indian J. Phys. 96 (2022) 1205. https://doi.org/10.1007/s12648-021-02052-x
24. A.A. Alzubadi, R.S. Obaid. Study of the nuclear deformation of some even-even isotopes using Hartree-Fock-Bogoliubov method (effect of the collective motion). Indian J. Phys. 93 (2019) 75. https://doi.org/10.1007/s12648-018-1269-2
25. H. Horie, K. Ogawa. Effective proton-neutron interaction and spectroscopy of the nuclei with N = 29. Prog. Theor. Phys. 46 (1971) 439. https://doi.org/10.1143/PTP.46.439
26. R.A. Broglia, V. Zelevinsky (Eds.). Fifty Years of Nuclear BCS. Pairing in Finite Systems (World Scientific Publishing Co. Pte. Ltd., 2013) 693 p. https://doi.org/10.1142/8526
27. B.A. Brown, W.D.M. Rae. The shell-model code NuShellX@MSU. Nucl. Data Sheets 120 (2014) 115. https://doi.org/10.1016/j.nds.2014.07.022
28. W.A. Richter et al. New effective interactions for the 0f1p shell. Nucl. Phys. A 523 (1991) 325. https://doi.org/10.1016/0375-9474(91)90007-S
29. T. Iwamoto, H. Horie, A. Yokoyama. Inelastic electron scattering form factors for the excitation of the 2+ states in the 1f7/2 nuclei. Phys. Rev. C 25 (1982) 658. https://doi.org/10.1103/PhysRevC.25.658
30. N.J. Stone. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments. IAEA, International Nuclear Data Committee INDC(NDS)-0658 (Vienna, Austria, Vienna International Centre, 2014) 171 p. https://doi.org/10.61092/iaea.zhrz-3g5j
31. G.N. Flaiyh. Inelastic electron scattering form factors involving the second excited 2+ level in the isotopes 50,54,52Cr. Iraqi J. Phys. 13 (2015) 19. https://doi.org/10.30723/ijp.v13i28.239
32. G.N. Flaiyh. Core polarization effects on the inelastic longitudinal electron scattering form factors of 48,50Ti and 52,54Cr nuclei. Iraqi J. Sci. 57 (2016) 639. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7551/2648
33. J. Heisenberg, J.S. McCarthy, I. Sick. Inelastic electron scattering from several Ca, Ti and Fe isotopes. Nucl. Phys. A 164 (1971) 353. https://doi.org/10.1016/0375-9474(71)90219-3
34. L.J. Tassie. A model of nuclear shape oscillations for γ-Transitions and Electron Excitation. Aust. J. Phys. 9 (1956) 407. https://doi.org/10.1071/PH560407
35. J.W. Lightbody, Jr. et al. Elastic and inelastic electron scattering from 50,52,54Cr. Phys. Rev. C 27 (1983) 113. https://doi.org/10.1103/PhysRevC.27.113
36. P.K. Raina, S.K. Sharma. Form factors and transition charge densities for the quadrupole and hexadecupole electroexcitation of some 2p-1f shell nuclei. Phys. Rev. C 37 (1988) 1427. https://doi.org/10.1103/PhysRevC.37.1427
37. A.M. Selig et al. Effective electro-magnetic operators of 50Ti investigated with the (e, é) reaction. Nucl. Phys. A 476 (1988) 413. https://doi.org/10.1016/0375-9474(88)90418-6
38. A. Poves et al. Shell model study of the isobaric chains A = 50, A = 51 and A = 52. Nucl. Phys. A 694 (2001) 157. https://doi.org/10.1016/S0375-9474(01)00967-8
39. Live Chart of Nuclides. https://www-nds.iaea.org
40. J. Erler, P. Klupfel, P-G. Reinhard. Self-consistent nuclear mean-field models: example Skyrme-Hartree-Fock. J. Phys. G 38 (2011) 33101. https://doi.org/10.1088/0954-3899/38/3/033101
41. A.A. Alzubadi, R.S.Obaid. An analysis of the tensor force and pairing correlation on the disappearance of nuclear magicity at N = 28 region. Braz. J. Phys. 53 (2023) 99. https://doi.org/10.1007/s13538-023-01305-w
42. P. Möller et al. Nuclear ground-state masses and deformations: FRDM (2012). At. Data Nucl. Data Tables 109-110 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.002