![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Systematics of pygmy dipole resonance energies in medium and heavy atomic nuclei with neutron excess
V. A. Plujko*, O. M. Gorbachenko, N. O. Romanovskyi
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
*Corresponding author. E-mail address:
plujko@gmail.com
Abstract: Systematics of the energies of the pygmy dipole resonances (PDR) in medium and heavy nuclei with neutron excess is considered. The macroscopic Isacker - Nagarajan - Warner model, incorporating a relative shift between the proton core density and the surface neutron density, is used to describe the PDR energies. Modified expressions for calculating energy with the number of near-surface neutrons proportional to the neutron skin thickness according to the Pethick - Ravenhall approach are presented. The results are compared with microscopic calculations for Nickel, Tin, and Lead isotope chains. It is demonstrated that the calculated PDR energies, depending on the neutron excess, exhibit the same behavior as those calculated in microscopic approaches and experimental data. Simple expressions for the PDR energy as a function of the neutron skin thickness are proposed to describe the values of PDR energies calculated using microscopic models and can be considered as systematics of microscopic calculations of PDR energies in medium and heavy neutron-rich nuclei.
Keywords: pygmy dipole resonance (PDR), energies of the PDR, energy systematics, neutron skin thickness, number of near-surface neutrons.
References:1. D. Savran, T. Aumann, A. Zilges. Experimental studies of the Pygmy Dipole Resonance. Prog. Part. Nucl. Phys. 70 (2013) 210. https://doi.org/10.1016/j.ppnp.2013.02.003
2. D. Savran. Recent results on the pygmy dipole resonance. J. Phys.: Conf. Ser. 590 (2015) 012011. https://doi.org/10.1088/1742-6596/590/1/012011
3. A. Zilges et al. The Pygmy Dipole Resonance - status and new developments. J. Phys.: Conf. Ser. 580 (2015) 012052. https://doi.org/10.1088/1742-6596/580/1/012052
4. A. Bracco, E.G. Lanza, A. Tamii. Isoscalar and isovector dipole excitations: Nuclear properties from low-lying states and from the isovector giant dipole resonance. Prog. Part. Nucl. Phys. 106 (2019) 360. https://doi.org/10.1016/j.ppnp.2019.02.001
5. E.G. Lanza, A. Vitturi. Theoretical description of Pygmy (Dipole) Resonances. In: Handbook of Nuclear Physics. I. Tanihata, H. Toki, T. Kajino (Eds.) (Singapore, Springer, 2023). https://doi.org/10.1007/978-981-19-6345-2_75
6. E.G. Lanza et al. Theoretical studies of Pygmy Resonances. Prog. Part. Nucl. Phys. 129 (2023) 104006. https://doi.org/10.1016/j.ppnp.2022.104006
7. E.G. Lanza et al. Pygmy dipole resonances: open problems. J. Phys.: Conf. Ser. 2586 (2023) 012084. https://doi.org/10.1088/1742-6596/2586/1/012084
8. J.S. Brzosko et al. Effect of the pigmy resonance on the calculations of the neutron capture cross section. Can. J. Phys. 47(24) (1969) 2849. https://doi.org/10.1139/p69-348
9. M. Igashira et al. Systematics of the pygmy resonance in keV neutron capture γ-ray spectra of nuclei with N = 82 - 126. Nucl. Phys. A 457 (1986) 301. https://doi.org/10.1016/0375-9474(86)90380-5
10. S. Goriely. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436 (1998) 10. https://doi.org/10.1016/S0370-2693(98)00907-1
11. M. Arnould, S. Goriely, K. Takahashi. The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450 (2007) 97. https://doi.org/10.1016/j.physrep.2007.06.002
12. S. Goriely. Nuclear properties for nuclear astrophysics studies. Eur. Phys. J. A 59 (2023) 16. https://doi.org/10.1140/epja/s10050-023-00931-x
13. T. Aumann. Low-energy dipole response of exotic nuclei. Eur. Phys. J. A 55 (2019) 234. http://dx.doi.org/10.1140/epja/i2019-12862-7
14. A. Zilges et al. Photonuclear reactions - From basic research to applications. Prog. Part. Nucl. Phys. 122 (2022) 103903. https://doi.org/10.1016/j.ppnp.2021.103903
15. J. Chambers et al. Pygmy dipole resonances in the calcium isotopes. Phys. Rev. C 50 (1994) R2671. https://doi.org/10.1103/PhysRevC.50.R2671
16. D. Vretenar et al. Collectivity of the low-lying dipole strength in relativistic random approximation. Nucl. Phys. A 692 (2001) 496. https://doi.org/10.1016/S0375-9474(01)00653-4
17. S. Goriely, E. Khan. Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section. Nucl. Phys. A 706 (2002) 217. https://doi.org/10.1016/S0375-9474(02)00860-6
18. N. Paar et al. Isotopic dependence of the pygmy dipole resonance. Phys. Lett. B 606 (2005) 288. https://doi.org/10.1016/j.physletb.2004.12.011
19. J. Piekarewicz. Pygmy dipole resonance as a constraint on the neutron skin of heavy nuclei. Phys. Rev. C 73 (2006) 044325. https://doi.org/10.1103/PhysRevC.73.044325
20. N. Tsoneva, H. Lenske. Pygmy dipole resonances in the tin region. Phys. Rev. C 77 (2008) 024321. https://doi.org/10.1103/PhysRevC.77.024321
21. E. Litvinova et al. Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei. Phys. Rev. C 79 (2009) 054312. https://doi.org/10.1103/PhysRevC.79.054312
22. G. Có et al. Pygmy and giant electric dipole responses of medium-heavy nuclei in a self-consistent random-phase approximation approach with a finite-range interaction. Phys. Rev. C 87 (2013) 034305. https://doi.org/10.1103/PhysRevC.87.034305
23. E.G. Lanza, A. Vitturi, M.V. Andrés. Microscopic nuclear form factors for the pygmy dipole resonance. Phys. Rev. C 91 (2015) 054607. https://doi.org/10.1103/PhysRevC.91.054607
24. V.I. Abrosimov, O.I. Davydovska. Semiclassical model of dipole pygmy-resonance in nuclei with neutron excess. Ukr. J. Phys. 54(11) (2009) 1069. (Ukr) http://archive.ujp.bitp.kiev.ua/files/journals/54/11/541102p.pdf
25. Y. Suzuki, K. Ikeda, H. Sato. New type of dipole vibration in nuclei. Prog. Theor. Phys. 83 (1990) 180. https://doi.org/10.1143/PTP.83.180
26. P. Van Isacker, M.A. Nagarajan, D.D. Warner. Effect of the neutron skin on collective states of nuclei. Phys. Rev. C 45 (1992) R13(R). https://doi.org/10.1103/PhysRevC.45.R13
27. V. Baran et al. Pygmy dipole resonance: Collective features and symmetry energy effects. Phys. Rev. C 85 (2012) 051601(R). https://doi.org/10.1103/PhysRevC.85.051601
28. V. Baran et al. Collective dipole modes in nuclear systems. Rom. Journ. Phys. 57 (2012) 36. https://rjp.nipne.ro/2012_57_1-2/RomJPhys.57.p36.pdf
29. A. Croitoru et al. Pygmy dipole resonance in a schematic model. Rom. Journ. Phys. 60 (2015) 748. https://rjp.nipne.ro/2015_60_5-6/RomJPhys.60.p748.pdf
30. V. Plujko et al. Improvements and testing practical expressions for photon strength functions of E1 gamma-transitions. EPJ Web of Conf. 146 (2017) 05014. https://doi.org/10.1051/epjconf/201714605014
31. O.M. Gorbachenko et al. Description of photoabsorption using photon strength function with the excitation of two resonance states. Nucl. Phys. At. Energy 24(1) (2023) 17. (Ukr) https://doi.org/10.15407/jnpae2023.01.017
32. C.J. Pethick, D.G. Ravenhall. The dependence of neutron skin thickness and surface tension on neutron excess. Nucl. Phys. A 606(1-2) (1996) 173. https://doi.org/10.1016/0375-9474(96)00216-3
33. M. Markova, P. von Neumann-Cosel, E. Litvinova. Systematics of the low-energy electric dipole strength in the Sn isotopic chain. Phys. Lett. B 860 (2025) 139216. https://doi.org/10.1016/j.physletb.2024.139216
34. W.D. Myers, K.-H. Schmidt. An update on droplet-model charge distributions. Nucl. Phys. A 410 (1983) 61. https://doi.org/10.1016/0375-9474(83)90401-3
35. S. Goriely, F. Tondeur, J.M. Pearson. A Hartree-Fock nuclear mass table. At. Data Nucl. Data Tables 77 (2001) 311. https://doi.org/10.1006/adnd.2000.0857
36. Y. Alhassid, M. Gai, G.F. Bertsch. Radiative width of molecular-cluster states. Phys. Rev. Lett. 49 (1982) 1482. https://doi.org/10.1103/PhysRevLett.49.1482
37. H. Kurasawa, T. Suzuki. A sum-rule constraint on the soft dipole mode. Prog. Theor. Phys. 94 (1995) 931. https://doi.org/10.1143/PTP.94.931
38. M. Goldhaber, E. Teller. On nuclear dipole vibrations. Phys. Rev. 74 (1948) 1046. https://doi.org/10.1103/PhysRev.74.1046
39. L.R.B. Elton. A semi-empirical formula for nuclear radius. Nucl. Phys. 5 (1958) 173. https://doi.org/10.1016/0029-5582(58)90016-6
40. L.R.B. Elton. Nuclear Sizes (Oxford, Oxford University Press, 1961) 114 p. https://www.abebooks.com/first-edition/Nuclear-Sizes-Elton-L-R-B/31725115015/bd
41. R.W. Hasse, W.D. Myers. Geometrical Relationships of Macroscopic Nuclear Physics (Heidelberg, Springer-Verlag, 1988). https://doi.org/10.1007/978-3-642-83017-4
42. M. Warda et al. Analysis of bulk and surface contributions in the neutron skin of nuclei. Phys. Rev. C 81 (2010) 054309. https://doi.org/10.1103/PhysRevC.81.054309
43. I. Angeli. Table of Nuclear Root Mean Square Charge Radii. INDC(HUN)-033 (Vienna, IAEA, 1999) 84 p. https://www-nds.iaea.org/publications/indc/indc-hun-0033.pdf
44. I. Angeli. A consistent set of nuclear rms charge radii: properties of the radius surface R(N, Z). At. Data Nucl. Data Tables 87 (2004) 185. https://doi.org/10.1016/j.adt.2004.04.002
45. I. Angeli, K.P. Marinova. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 99 (2013) 69. https://doi.org/10.1016/j.adt.2011.12.006
46. A. Trzcińska et al. Neutron density distributions deduced from antiprotonic atoms. Phys. Rev. Lett. 87 (2001) 082501. https://doi.org/10.1103/PhysRevLett.87.082501
47. J. Jastrzębski et al. Neutron density distributions from antiprotonic atoms compared with hadron scattering data. Int. J. Mod. Phys. E 13 (2004) 343. https://doi.org/10.1142/S0218301304002168
48. W.J. Światecki, A. Trzcińska, J. Jastrzębski. Difference of the root-mean-square sizes of neutron and proton distributions in nuclei: Comparison of theory with data. Phys. Rev. C 71 (2005) 047301. https://doi.org/10.1103/PhysRevC.71.047301
49. E. Friedman, A. Gal. In-medium nuclear interactions of low-energy hadrons. Phys. Rep. 452 (2007) 89. https://doi.org/10.1016/j.physrep.2007.08.002
50. M. Warda et al. Neutron skin thickness in the droplet model with surface width dependence: Indications of softness of the nuclear symmetry energy. Phys. Rev. C 80 (2009) 024316. https://doi.org/10.1103/PhysRevC.80.024316
51. S.V. Lukyanov, A.I. Sanzhur. Influence of surface effects on neutron skin in atomic nuclei. Nucl. Phys. At. Energy 21 (2020) 223. https://doi.org/10.15407/jnpae2020.03.223
52. J.T. Zhang et al. Systematic trends of neutron skin thickness versus relative neutron excess. Phys. Rev. C 104 (2021) 034303. https://doi.org/10.1103/PhysRevC.104.034303
53. M. Warda, B. Nerlo-Pomorska, K. Pomorski. Isospin dependence of proton and neutron radii within relativistic mean field theory. Nucl. Phys. A 635 (1998) 484. https://doi.org/10.1016/S0375-9474(98)00188-2
54. W.M. Seif, H. Mansour. Systematics of nucleon density distributions and neutron skin of nuclei. Int. J. Mod. Phys. E 24 (2015) 1550083. https://doi.org/10.1142/S0218301315500834
55. V.M. Kolomietz, A.I. Sanzhur. Bulk and surface symmetry energy for the nuclei far from the valley of stability. Nucl. Phys. At. Energy 8(2) (2007) 7. (Ukr) https://doi.org/10.15407/jnpae2007.02.007
56. V.M. Kolomietz, A.I. Sanzhur. Equation of state and symmetry energy within the stability valley. Eur. Phys. J. A 38 (2008) 345. https://doi.org/10.1140/epja/i2008-10679-1
57. A.E.S Green. The systematics of nuclear energies. Phys. Rev. 83 (1951) 1248. https://doi.org/10.1103/PhysRev.83.1248.2
58. A.E.S. Green, N.A. Engler. Mass surfaces. Phys. Rev. 91 (1952) 40. https://doi.org/10.1103/PhysRev.91.40
59. P. Moller et al. Nuclear ground-state masses and deformations. At. Data and Nucl. Data Tables 59 (1995) 185. https://doi.org/10.1006/adnd.1995.1002