Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 1, pages 86-92.
Section: Engineering and Methods of Experiment.
Received: 11.09.2024; Accepted: 24.02.2025; Published online: 29.03.2025.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2025.01.086

Radiation-resistant plastic scintillators

D. A. Yelisieiev1, O. V. Yelisieieva1,*, Yu. Î. Íurkalenko1, P. Ì. Zhmurin1, V. D. Alekseev1, R. P. Svoiakov2

1 Institute of Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, Kharkiv, Ukraine
2 Institute for Functional Materials Chemistry, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, Kharkiv, Ukraine


*Corresponding author. E-mail address: osvidlo@i.ua

Abstract: Fluorinederivatives of 4'-phenyl-3-hydroxyflavone have been synthesized and used as activators for radiation-resistant plastic scintillators based on polystyrene. Plastic scintillators containing 1.0 wt. % of the corresponding activators were created. The spectral-luminescent and scintillation properties of the obtained materials were studied, and their radiation resistance was determined. It was shown that the use of fluorinederivatives of 4'-phenyl-3-hydroxyflavone enables the production of plastic scintillators with radiation resistance at the level of 490 kGy.

Keywords: 4'-phenyl-3-hydroxyflavone, activator, plastic scintillator, light yield, radiation hardness.

References:

1. J.F. Leavy et al. Upset due to a single particle caused propagated transient in a bulk CMOS microprocessor. IEEE Transactions on Nuclear Science 38(6) (1991) 1493. https://doi.org/10.1109/23.124137

2. S. Chatrchyan et al. CMS Collaboration. The CMS experiment at the CERN Large Hadron Collider. Journal of Instrumentation 3 (2008) S08004. https://doi.org/10.1088/1748-0221/3/08/S08004

3. A.A. Alves Jr. et al. LHCb Collaboration. The LHCb Detector at the LHC. Journal of Instrumentation 3 (2008) S08005. https://doi.org/10.1088/1748-0221/3/08/S08005

4. L. Bartoszek et al. Mu2e technical design report. Fermilab-TM-2594. Fermilab-DESIGN-2014-1 (2015) 888. arXiv:1501.05241 [physics.ins-det]. https://doi.org/10.48550/arXiv.1501.05241

5. J.B. Birks. The Theory and Practice of Scintillation Counting (London: Pergamon Press, 1964) 664 ð. https://www.elsevier.com/books/the-theory-and-practice-of-scintillation-counting/birks/978-0-08-010472-0

6. V.G. Senchishin et al. Radiation resistance investigation of SCSN-81T, BC-408, UPS923A and UPS98RH plastic scintillators. Functional Materials 10(2) (2003) 281. http://functmaterials.org.ua/contents/10-2/FM102-30.pdf

7. V. G. Senchishin et al. A new radiation stable plastic scintillator. Nucl. Insrum. Methods A 364(2) (1995) 253. https://doi.org/10.1016/0168-9002(95)00470-X

8. V.G. Senchysyn et al. New radiation hard plastic scintillator UPS-98RH for hadron calorimeters. Problems of Atomic Science and Technology 3 (2005) 160. (Rus) https://vant.kipt.kharkov.ua/ARTICLE/VANT_2005_3/article_2005_3_160.pdf

9. A.D. Bross, A. Pla-Dalmau. Radiation induced hidden absorption effects in polystyrene based plastic scintillators. In: Radiation Effects on Polymers. Chapter 37. ACS Symp. Ser. 475 (1991) 578. https://doi.org/10.1021/bk-1991-0475.ch037

10. A.D. Bross, A. Pla-Dalmau. Radiation effects in intrinsic 3HF scintillator. Nucl. Instrum. Methods A 327 (1993) 337. https://doi.org/10.1016/0168-9002(93)90699-I

11. Yu.A. Gurkalenko et al. Radiation-hard plastic scintillators with 3-hydroxyflavone derivatives. Functional Materials 23(1) (2016) 40. https://doi.org/10.15407/fm23.01.040

12. G.I. Britvich et al. Radiation damage studies on polystyrene-based scintillators. Nucl. Instrum. Methods A 326(3) (1993) 483. https://doi.org/10.1016/0168-9002(93)90849-D

13. J.B. Schlenoff, J. Dharia, K.F. Johnson. Low self-absorbing, intrinsically scintillating polymers. Patent WO199322306À1, C08L25/18. Publication on 11.11.1993.

14. C. Zorn et al. Pilot study of new radiation-resistant plastic scintillators doped with 3-hydroxyflavone. Nucl. Instrum. Methods A 273(1) (1988) 108. https://doi.org/10.1016/0168-9002(88)90804-2

15. A.D. Bross, A. Pla-Dalmau, C.W. Spangler. New fluorescent compounds for plastic scintillator applications. Nucl. Instrum. Methods A 325 (1993) 168. https://doi.org/10.1016/0168-9002(93)91018-I

16. Yu.A. Gurkalenko et al. Enhance of the polystyrene based plastic scintillator radiation hardness; using fluorine-derivatives of 3-hydroxyflavone. Functional Materials 25(4) (2018) 670. https://doi.org/10.15407/fm25.04.670

17. B.S. Jayashree et al. Synthesis of substituted 3-hydroxy flavones for antioxidant and antimicrobial activity. Pharmacologyonline 3 (2008) 586. https://pharmacologyonline.silae.it/files/archives/2008/vol3/058_Javasheree.pdf

18. B.V. Hrynyov, V.G. Senchyshyn. Plastic Scintillators (Kharkiv: Akta, 2003) 324 p. (Ukr)

19. M.I. Aizatskyi et al. State and prospects of the linac of nuclear-physics complex with energy of electrons up to 100 MeV. Problems of Atomic Science and Technology 91(3) (2014) 60. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2014_3/article_2014_3_60.pdf