Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2025, volume 26, issue 1, pages 42-54.
Section: Nuclear Physics.
Received: 03.11.2024; Accepted: 24.02.2025; Published online: 29.03.2025.
PDF Full text (en)
https://doi.org/10.15407/jnpae2025.01.042

Isoscalar and isovector giant resonances in 56,60,68Ni isotopes using self-consistent Skyrme HF-RPA

E. G. Khidher1, A. H. Taqi2,*

1 Department of Physics, College of Education for Pure Sciences, University of Kirkuk, Kirkuk, Iraq
2 Department of Physics, College of Science, University of Kirkuk, Kirkuk, Iraq


*Corresponding author. E-mail address: alitaqi@uokirkuk.edu.iq

Abstract: In this study, we presented the centroid energies (ECEN), scaled energies (ES), and constrained energies (ECON) of the isoscalar (T = 0) giant monopole and quadrupole resonances and isovector (T = 1) giant dipole resonances in 56,60,68Ni. Utilizing 16 distinct Skyrme-type effective nucleon-nucleon interactions often employed in the literature, these energies were computed using the completely self-consistent Hartree - Fock based on random phase approximation theory. We compared our theoretical calculations with the available experimental data. We primarily examined the effects of nuclear matter (NM) features, including the symmetry energy at saturation density, the effective mass (m*/m), and the nuclear matter incompressibility coefficient (KNM), on ECEN, ES, and ECON. We analyzed the sensitivity by determining the Pearson linear correlation coefficient between the calculated energies and NM properties. Also, we presented and discussed the values of ECEN, ES, and ECON as a function of atomic mass A.

Keywords: Skyrme force, giant resonance, Hartree - Fock, random phase approximation.

References:

1. A. Bohr, B.M. Mottelson. Nuclear Structure II. Nuclear Deformations (New York: Benjamin, 1975) 772 p. Google books

2. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin Heidelberg: Springer-Verlag, 1980). https://link.springer.com/book/9783540212065

3. M.N. Harakeh, A. van der Woude. Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford: Oxford Ademic, 2001). https://doi.org/10.1093/oso/9780198517337.003.0001

4. S. Shlomo, D.H. Youngblood. Nuclear matter compressibility from isoscalar giant monopole resonance. Phys. Rev. C 47 (1993) 529. https://doi.org/10.1103/PhysRevC.47.529

5. G. Colò, X. Roca-Maza, N. Paar. The nuclear symmetry energy and other isovector observables from the point of view of nuclear structure. Acta Physica Polonica B 46(3) (2015) 395. https://doi.org/10.5506/APhysPolB.46.395

6. A.H. Taqi, E.G. Khidher. Ground and transition properties of 40Ca and 48Ca nuclei. Nucl. Phys. At. Energy 19(4) (2018) 326. https://doi.org/10.15407/jnpae2018.04.326

7. G.C. Baldwin, G.S. Klaiber. Photo-fission in heavy elements. Phys. Rev. 71 (1947) 3. https://doi.org/10.1103/PhysRev.71.3

8. R. Pitthan, Th. Walcher. Inelastic electron scattering in the giant resonance region of La, Ce and Pr. Phys. Lett. B 36 (1971) 563. https://doi.org/10.1016/0370-2693(71)90090-6

9. M.B. Lewis, F.E. Bertrand. Evidence from inelastic proton scattering for a giant quadrupole vibration in spherical nuclei. Nucl. Phys. A 196 (1972) 337. https://doi.org/10.1016/0375-9474(72)90968-2

10. D.H. Youngblood et al. Isoscalar breathing-mode state in 144Sm and 208Pb. Phys. Rev. Lett. 39 (1977) 1188. https://doi.org/10.1103/PhysRevLett.39.1188

11. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310

12. M. Dutra et al. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85 (2012) 035201. https://doi.org/10.1103/PhysRevC.85.035201

13. N.K. Glendenning. Equation of state from nuclear and astrophysical evidence. Phys. Rev. C 37 (1988) 2733. https://doi.org/10.1103/PhysRevC.37.2733

14. J.M. Lattimer, M. Prakash. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 442 (2007) 109. https://doi.org/10.1016/j.physrep.2007.02.003

15. S. Shlomo, V.M. Kolomietz. Hot nuclei. Rep. Prog. Phys. 68 (2005) 1. https://doi.org/10.1088/0034-4885/68/1/R01

16. V.M. Kolomietz, S. Shlomo. Mean Field Theory (World Scientific, 2020) 588 p. https://doi.org/10.1142/11593

17. V.M. Kolomietz et al. Equation of state and phase transitions in asymmetric nuclear matter. Phys. Rev. C 64 (2001) 024315. https://doi.org/10.1103/PhysRevC.64.024315

18. A.H. Taqi, E.G. Khidher. Nuclear multipole excitations in the framework of self-consistent Hartree-Fock random phase approximation for Skyrme forces. Pramana Journal of Physics 93 (2019) 60. https://doi.org/10.1007/s12043-019-1821-4

19. A.H. Taqi, M.A. Hasan. Ground-state properties of even-even nuclei from He (Z = 2) to Ds (Z = 110) in the framework of Skyrme-Hartree-Fock-Bogoliubov theory. Arabian Journal for Science and Engineering 47 (2022) 761. https://doi.org/10.1007/s13369-021-05345-9

20. W.A. Mansour, A.H. Taqi. Isoscalar giant dipole resonance of tin isotopes 112,114,116,118,120,122,124Sn using HF-BCS and QRPA approximations. Kirkuk Journal of Science 18(4) (2023) 42. https://doi.org/10.32894/kujss.2023.145104.1126

21. S.H. Amin, A.A. Al-Rubaiee, A.H. Taqi. Effect of incompressibility and symmetry energy density on charge distribution and radii of closed-shell nuclei. Kirkuk Journal of Science 17(3) (2022) 17. https://doi.org/10.32894/kujss.2022.135889.1073

22. A.H. Taqi, G.L. Alawi. Isoscalar giant resonance in 100,116,132Sn isotopes using Skyrme HF-RPA. Nucl. Phys. A 983 (2019) 103. https://doi.org/10.1016/j.nuclphysa.2019.01.001

23. B. Sur et al. Reinvestigation of 56Ni decay. Phys. Rev. C 42 (1990) 573. https://doi.org/10.1103/PhysRevC.42.573

24. G. Colò et al. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program. Computer Physics Communications 184(1) (2013) 142. https://doi.org/10.1016/j.cpc.2012.07.016

25. S. Goriely, N. Chamel, J.M. Pearson. Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. Phys. Rev. Lett. 102 (2009) 152503. https://doi.org/10.1103/PhysRevLett.102.152503

26. L. Guo-Qiang. A systematic study of nuclear properties with Skyrme forces. J. Phys. G 17 (1991) 1. https://doi.org/10.1088/0954-3899/17/1/002

27. M. Rayet e al. Nuclear forces and the properties of matter at high temperature and density. Astron. Astrophys. 116 (1982) 183. https://adsabs.harvard.edu/full/1982A%26A...116..183R

28. N. Van Giai, H. Sagawa. Spin-isospin and pairing properties of modified Skyrme interactions. Phys. Lett. B 106 (1981) 379. https://doi.org/10.1016/0370-2693(81)90646-8

29. Q.B. Shen, Y.L. Han, H.R. Guo. Isospin dependent nucleon-nucleus optical potential with Skyrme interactions. Phys. Rev. C 80 (2009) 024604. https://doi.org/10.1103/PhysRevC.80.024604

30. D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

31. M. Beiner et al. Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description. Nucl. Phys. A 238 (1975) 29. https://doi.org/10.1016/0375-9474(75)90338-3

32. B.K. Agrawal, S. Shlomo, V.K. Au. Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models. Phys. Rev. C 68 (2003) 031304. https://doi.org/10.1103/PhysRevC.68.031304

33. P.-G. Reinhard, H. Flocard. Nuclear effective forces and isotope shifts. Nucl. Phys. A 584 (1995) 467. https://doi.org/10.1016/0375-9474(94)00770-N

34. J. Bartel et al. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1

35. L. Bennour et al. Charge distributions of 208Pb, 206Pb, and 205Tl and the mean-field approximation. Phys. Rev. C 40 (1989) 2834. https://doi.org/10.1103/PhysRevC.40.2834

36. E. Chabanat et al. A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8

37. S. Shlomo, G. Bonasera, M.R. Anders. Giant resonances in 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm and 208Pb and properties of nuclear matter. AIP Conf. Proc. 2150 (2019) 030011. https://doi.org/10.1063/1.5124600

38. G. Bonasera et al. Isoscalar and isovector giant resonances in 44Ca, 54Fe, 64,68Zn and 56,58,60,68Ni. Nucl. Phys. A 1010 (2021) 122159. https://doi.org/10.1016/j.nuclphysa.2021.122159

39. C. Monrozeau et al. First measurement of the giant monopole and quadrupole resonances in a short-lived nucleus: 56Ni. Phys. Rev. Lett. 100 (2008) 042501. https://doi.org/10.1103/PhysRevLett.100.042501

40. M. Vandebrouck et al. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni. Phys. Rev. Lett. 113 (2014) 032504. https://doi.org/10.1103/PhysRevLett.113.032504

41. M. Vandebrouck et al. Isoscalar response of 68Ni to α-particle and deuteron probes. Phys. Rev. C 92 (2015) 024316. https://doi.org/10.1103/PhysRevC.92.024316

42. J. Button et al. Isoscalar E0, E1, and E2 strength in 44Ca. Phys. Rev. C 96 (2017) 054330. https://doi.org/10.1103/PhysRevC.96.054330

43. J. Button et al. Isoscalar E0, E1, and E2 strength in 54Fe and 64,68Zn. Phys. Rev. C 100 (2019) 064318. https://doi.org/10.1103/PhysRevC.100.064318

44. Y.-W. Lui et al. Isoscalar giant resonances for nuclei with mass between 56 and 60. Phys. Rev. C 73 (2006) 014314. https://doi.org/10.1103/PhysRevC.73.014314

45. Krishichayan et al. Isoscalar giant resonances in 90,92,94Zr. Phys. Rev. C 92 (2015) 044323. https://doi.org/10.1103/PhysRevC.92.044323

46. D.H. Youngblood, Y.-W. Lui, H.L. Clark. Isoscalar giant resonances in 28Si and the mass dependence of nuclear compressibility. Phys. Rev. C 65 (2002) 034302. https://doi.org/10.1103/PhysRevC.65.034302

47. Y.-W. Lui, H.L. Clark, D.H. Youngblood. Giant monopole strength in 58Ni. Phys. Rev. C 61 (2000) 067307. https://doi.org/10.1103/PhysRevC.61.067307

48. D.H. Youngblood, Y.-W. Lui, H.L. Clark. Giant resonances in 24Mg. Phys. Rev. C 60 (1999) 014304. https://doi.org/10.1103/PhysRevC.60.014304

49. D.H. Youngblood et al. Isoscalar E0, E1, E2, and E3 strength in 92,96,98,100Mo. Phys. Rev. C 92 (2015) 014318. https://doi.org/10.1103/PhysRevC.92.014318

50. CDFE – Centre for Photonuclear Experiments Data. Home page, 2019. http://cdfe.sinp.msu.ru