![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The quartic anharmonic oscillator – an oscillator-basis expansion approach. II. Study of the wave functions and acceleration of the expansions convergence
V. A. Babenko*, A. V. Nesterov
Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
pet2@ukr.net
Abstract: For the traditional physical model of the quantum quartic anharmonic oscillator with the Hamiltonian H = ½(p2 + x2) + λx4, which plays a significant role in quantum field theory, elementary particle physics, and nuclear physics, its physical characteristics and properties are comprehensively studied and calculated. The method we propose for studying the model, based on expanding the system's wave function in a complete set of harmonic oscillator eigenfunctions, facilitates a thorough analysis and evaluation of all parameters and features of the corresponding quantum systems. This model is also widely used for studying molecular vibrations, phonon modes in solids, nonlinear optical phenomena, and more. We have calculated and constructed the wave functions of the anharmonic oscillator for various values of the oscillator coupling constant λ. Furthermore, an improved and modified expansion method, using a generalized optimizing oscillator basis with variable frequency, has also been proposed and studied in detail. This improved method drastically accelerates the convergence of expansions across the entire range of the coupling constant variation, thereby substantially increasing the efficiency of the applied method by allowing calculations with a very small number of expansion basis functions N ≲ 10. Consequently, this modified approach provides a practically complete, quite simple, and efficient solution to the problem of the quartic anharmonic oscillator, enabling the relatively easy computation of all its physical properties, including the energies of the ground and excited states, as well as the wave functions of these states, for any values of the coupling constant.
Keywords: anharmonic oscillator, oscillator basis, quantum field theory.
References:1. V.A. Babenko, A.V. Nesterov. The quartic anharmonic oscillator - an oscillator-basis expansion approach. I. Energy levels study and calculation. Nucl. Phys. At. Energy 25(3) (2024) 216. (Ukr) https://doi.org/10.15407/jnpae2024.03.216
2. C.M. Bender, T.T. Wu. Anharmonic oscillator. Phys. Rev. 184 (1969) 1231. https://doi.org/10.1103/PhysRev.184.1231
3. F.T. Hioe, D. Macmillen, E.W. Montroll. Quantum theory of anharmonic oscillators: Energy levels of a single and a pair of coupled oscillators with quartic coupling. Phys. Rep. 43 (1978) 305. https://doi.org/10.1016/0370-1573(78)90097-2
4. C. Itzykson, J.-B. Zuber. Quantum Field Theory (New York: McGraw-Hill, 1980) 705 p. Google books
5. G.A. Arteca, F.M. Fernandez, E.A. Castro. Large Order Perturbation Theory and Summation Methods in Quantum Mechanics (Berlin, Heidelberg: Springer-Verlag, 1990) 644 p. https://doi.org/10.1007/978-3-642-93469-8
6. J.C. Le Guillou, J. Zinn-Justin (Eds.). Current Physics-Sources and Comments. Book series. Vol. 7. Large-Order Behaviour of Perturbation Theory (Amsterdam: Elsevier Science Publishers, 1990) 580 p. https://www.sciencedirect.com/bookseries/current-physics-sources-and-comments/vol/7/suppl/C
7. J. Zinn-Justin. Quantum Field Theory and Critical Phenomena. 4th edn. (Oxford: Clarendon Press, 2002) 1054 p. https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
8. G. Lévai, J.M. Arias. Search for critical-point nuclei in terms of the sextic oscillator. Phys. Rev. C 81 (2010) 044304. https://doi.org/10.1103/PhysRevC.81.044304
9. A.A. Raduta, P. Buganu. Application of the sextic oscillator with a centrifugal barrier and the spheroidal equation for some X(5) candidate nuclei. J. Phys. G 40 (2013) 025108. https://doi.org/10.1088/0954-3899/40/2/025108
10. R. Budaca. Quartic oscillator potential in the γ-rigid regime of the collective geometrical model. Eur. Phys. J. A 50 (2014) 87. https://doi.org/10.1140/epja/i2014-14087-8
11. P. Buganu, R. Budaca. Analytical solution for the Davydov-Chaban Hamiltonian with a sextic potential for γ = 30o. Phys. Rev. C 91 (2015) 014306. https://doi.org/10.1103/PhysRevC.91.014306
12. M.M. Hammad et al. Critical potentials and fluctuations phenomena with quartic, sextic, and octic anharmonic oscillator potentials. Nucl. Phys. A 1004 (2020) 122036. https://doi.org/10.1016/j.nuclphysa.2020.122036
13. A.V. Turbiner, J.C. del Valle Rosales. Quantum Anharmonic Oscillator (Singapore: World Scientific, 2023) 286 p. https://doi.org/10.1142/13252
14. A.S. Davydov, A.A. Chaban. Rotation-vibration interaction in non-axial even nuclei. Nucl. Phys. 20 (1960) 499. https://doi.org/10.1016/0029-5582(60)90191-7
15. A.S. Davydov. Excited States of Atomic Nuclei (Moskva: Atomizdat, 1967) 262 p. (Rus) Google books
16. I.E. Kashuba, Y.V. Porodzinskii, E.S. Sukhovitskii. Use of the Davydov-Chaban model for the description of fast neutrons by even-even nuclei. Sov. J. Nucl. Phys. 48 (1988) 1012.
17. I.E. Kashuba, O.I. Davidovskaya. Spin dependence of the shape of even-even nuclei within the Davydov-Chaban model. Phys. Atom. Nucl. 65 (2002) 1411. https://doi.org/10.1134/1.1501652
18. J.P. Davidson. Rotations and vibrations in deformed nuclei. Rev. Mod. Phys. 37 (1965) 105. https://doi.org/10.1103/RevModPhys.37.105
19. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. 2 (New York: W. A. Benjamin, 1975) 748 p. Google books
20. M. Abramowitz, I.A. Stegun (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Washington, D.C.: National Bureau of Standards, 1964) 1046 p. Google books
21. I.Ye. Kashuba, Ye.Sh. Sukhovitsky. Calculation of functions of a parabolic cylinder in models of dynamic nuclear structure and nucleon-nuclear scattering. Preprint. Institute for Nuclear Research NAS of UkrSSR KIYI-87-4 (Kyiv, 1987) 19 p. (Rus) https://inis.iaea.org/records/prjec-zj350
22. A.K. Zajchenko, I.E. Kashuba. Evaluation of the parabolic cylinder function in the context of nuclear physics. Preprint. Institute for Nuclear Research NAS of Ukraine KIYI-01-3 (Kyiv, 2001) 14 p. (Rus) https://inis.iaea.org/records/jcv09-53h70
23. M. Garai, D.A. Barlow. Taking the road less traveled: Solving the one-dimensional quantum oscillator using the parabolic-cylinder equation. arXiv:2401.07913v1 [quant-ph]. https://doi.org/10.48550/arXiv.2401.07913
24. A.H. Nayfeh. Introduction to Perturbation Techniques (New York: Wiley, 1981) 519 p. Google books
25. F. Verhulst. Nonlinear Differential Equations and Dynamical Systems (Berlin: Springer, 1996) 306 p. https://doi.org/10.1007/978-3-642-61453-8
26. V.S. Vasilevsky, F. Arickx. Algebraic model for quantum scattering: Reformulation, analysis, and numerical strategies. Phys. Rev. A 55 (1997) 265. https://doi.org/10.1103/PhysRevA.55.265
27. V.S. Vasilevsky, M.D. Soloha-Klymchak. T-matrix in discrete oscillator representation. Ukr. J. Phys. 60 (2015) 297. https://doi.org/10.15407/ujpe60.04.0297
28. P. Okun, K. Burke. Uncommonly accurate energies for the general quartic oscillator. Int. J. Quantum Chem. 121 (2021) e26554. https://doi.org/10.1002/qua.26554
29. A.V. Turbiner, J.C. del Valle. Comment on: Uncommonly accurate energies for the general quartic oscillator. Int. J. Quantum Chem. 121 (2021) e26766. https://doi.org/10.1002/qua.26766
30. F.M. Fernandez, J. Garcia. Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators. Acta Polytech. 57 (2017) 391. https://doi.org/10.14311/AP.2017.57.0391