Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 4, pages 388-393.
Section: Engineering and Methods of Experiment.
Received: 15.02.2024; Accepted: 02.12.2024; Published online: 26.12.2024.
PDF Full text (en)
https://doi.org/10.15407/jnpae2024.04.388

Microdosimetry test on double layer beam shaping assembly neutron beam as a boron neutron capture therapy neutron source using PHITS code

Bilalodin1,*, A. Haryadi1, Sehah1, Zusfahair2, Y. Sardjono3, R. Tursinah4

1 Department of Physics, Faculty of Mathematics and Natural Science, Jenderal Soedirman University, Purwokerto, Java, Indonesia
2 Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University, Purwokerto, Java, Indonesia
3 Research Centre for Accelerator Technology, National Research and Innovation Agency, Jakarta, Indonesia
4 Center for Applied Nuclear Science and Nuclear Agency, Bandung, Indonesia


*Corresponding author. E-mail address: bilalodin@unsoed.ac.id

Abstract: A microdosimetry test on a double layer beam shaping assembly (DLBSA) neutron beam has been carried out using the particle and heavy ion transport code system (PHITS). The test aims to understand the mechanism of interactions between neutrons and microcells and to determine the linear energy transfer (LET) and the relative biological effectiveness (RBE) values of the DLBSA neutron beam. The test was carried out by interacting a neutron beam with microcells containing 10B using a boron concentration of 70 ppm. The neutron source used comes from a 30 MeV cyclotron-based DLBSA. The simulation results show that the interaction of neutrons with microcells occurs through scattering, reflection, and absorption reaction mechanisms. The results of the microdosimetry test showed that the peak LET value of α-particles was 100 keV/μm and 7Li was 200 keV/μm, with an RBE value for α of 9.83 and 7Li of 6.11.

Keywords: microdosimetry, microcell, linear energy transfer, relative biological effectiveness, particle and heavy ion transport code system, boron neutron capture therapy.

References:

1. W.A.G. Sauerwein. Principles and roots of neutron capture therapy. In: W. Sauerwein et al. (Eds.). Neutron Capture Therapy (Berlin - Heidelberg: Springer, 2012) p. 1. https://doi.org/10.1007/978-3-642-31334-9_1

2. A.M. Hassanein et al. An optimized epithermal BNCT beam design for research reactors. Progress in Nuclear Energy 106 (2018) 455. https://doi.org/10.1016/j.pnucene.2018.03.018

3. H. Tanaka et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Applied Radiation and Isotopes 69(12) (2011) 1642. https://doi.org/10.1016/j.apradiso.2011.03.020

4. Y. Hashimoto, F. Hiraga, Y. Kiyanagi. Effects of proton energy on optimal moderator system and neutron-induced radioactivity of compact accelerator-driven 9Be(p, n) neutron sources for BNCT. Physics Procedia 60 (2014) 332. https://doi.org/10.1016/j.phpro.2014.11.045

5. S. Hang et al. Monte Carlo study of the beam shaping assembly optimization for providing high epithermal neutron flux for BNCT based on D-T neutron generator. Journal of Radioanalytical and Nuclear Chemistry 310(3) (2016) 1289. https://doi.org/10.1007/s10967-016-5001-4

6. Bilalodin et al. Optimization and verification of double layer beam shaping assembly (DLBSA) for epithermal neutron generation. Jurnal Teknologi 84(4) (2022) 103. https://doi.org/10.11113/jurnalteknologi.v84.18047

7. J. Vohradsky et al. Evaluation of silicon based microdosimetry for boron neutron capture therapy quality assurance. Physica Medica 66 (2019) 8. https://doi.org/10.1016/j.ejmp.2019.09.072

8. T. Sato et al. Microdosimetric modeling of biological effectiveness for boron neutron capture therapy considering intra- and intercellular heterogeneity in 10B distribution. Scientific Reports 8 (2018) 988. https://doi.org/10.1038/s41598-017-18871-0

9. C.B Sylvester et al. Radiation-induced cardiovascular disease: mechanisms and importance of linear energy transfer. Frontiers in Cardiovascular Medicine 5 (2018) 5. https://doi.org/10.3389/fcvm.2018.00005

10. R.F. Barth, P. Mi, W. Yang. Boron delivery agents for neutron capture therapy of cancer. Cancer Communications 38(1) (2018) 1. https://doi.org/10.1186/s40880-018-0299-7

11. C.M. Lund et al. A microdosimetric analysis of the interactions of mono-energetic neutrons with human tissue. Physica Medica 73 (2020) 29. https://doi.org/10.1016/j.ejmp.2020.04.001

12. H. Fukunaga. Implications of radiation microdosimetry for accelerator-based boron neutron capture therapy: a radiobiological perspective. The British Journal of Radiology 93 (2020) 20200311. https://doi.org/10.1259/bjr.20200311

13. N. Hu et al. Evaluation of PHITS for microdosimetry in BNCT to support radiobiological research. Applied Radiation and Isotopes 161 (2020) 109148. https://doi.org/10.1016/j.apradiso.2020.109148

14. H. Horiguchi et al. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model. Journal of Radiation Research 56(2) (2015) 382. https://doi.org/10.1093/jrr/rru109

15. P. Shamshiri, G. Forozani, A. Zabihi. An investigation of the physics mechanism based on DNA damage produced by protons and alpha particles in a realistic DNA model. Nucl. Instrum. Methods B 454 (2019) 40. https://doi.org/10.1016/j.nimb.2019.04.086

16. T. Furuta, T. Sato. Medical application of particle and heavy ion transport code system PHITS. Radiological Physics and Technology 14(3) (2021) 215. https://doi.org/10.1007/s12194-021-00628-0

17. Y. Han et al. Microdosimetric analysis for boron neutron capture therapy via Monte Carlo track structure simulation with modified lithium cross-sections. Radiation Physics and Chemistry 209 (2023) 110956. https://doi.org/10.1016/j.radphyschem.2023.110956

18. Bilalodin et al. Optimization and analysis of neutron distribution on 30 MeV cyclotron-based double layer beam shaping assembly (DLBSA). Nucl. Phys. At. Energy 20 (2019) 70. https://doi.org/10.15407/jnpae2019.01.070

19. T. Sato et al. Particle and heavy ion transport code system, PHITS, version 2.52. Journal of Nuclear Science and Technology 50(9) (2013) 913. https://doi.org/10.1080/00223131.2013.814553

20. T. Sato et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. Journal of Nuclear Science and Technology 55(6) (2018) 684. https://doi.org/10.1080/00223131.2017.1419890

21. A. Tilikidis et al. An estimation of the relative biological effectiveness of 50 MV bremsstrahlung beams by microdosimetric techniques. Physics in Medicine & Biology 41(1) (1996) 55. https://doi.org/10.1088/0031-9155/41/1/005

22. I.S. Anderson et al. Research opportunities with compact accelerator-driven neutron sources. Physics Reports 654 (2016) 1. https://doi.org/10.1016/j.physrep.2016.07.007

23. N. Hu et al. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter. Journal of Radiation Research 61(2) (2020) 214. https://doi.org/10.1093/jrr/rrz101