Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 4, pages 372-378.
Section: Plasma Physics.
Received: 29.07.2024; Accepted: 02.12.2024; Published online: 26.12.2024.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2024.04.372

On the influence of metal impurities on the electrical conductivity of the dense plasma of pulse electric discharges in water

V. V. Hladkovskyi1, V. G. Panchenko2, P. V. Porytskyi2, O. A. Fedorovich2, L. M. Voitenko2, L. M. Sviata2,*

1 National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine


*Corresponding author. E-mail address: lsvjat@kinr.kiev.ua

Abstract: The effect of metal impurities on the electrical conductivity of a dense plasma of discharges in water is considered. Conductivity calculations were based on the method of Grad's moments. It is shown that a small amount of metal impurities can significantly change the value of the electrical conductivity coefficient compared to the case of pure water vapor. It was found that metal impurities can cause both an increase and a decrease in the electrical conductivity of the plasma, which is associated with the processes of interparticle collisions and the presence of clusters.

Keywords: dense plasma, pulsed discharge, discharge in water, electrical conductivity of plasma, collision cross-section, cluster.

References:

1. P. Šunka. Pulse electrical discharges in water and their applications. Phys. Plasmas 8(5) (2001) 2587. https://doi.org/10.1063/1.1356742

2. B.R. Locke, S.M. Thagard. Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chem. Plasma Process. 32(5) (2012) 875. https://doi.org/10.1007/s11090-012-9403-y

3. V.A. Zhovtyansky et al. Efficiency of renewable organic raw materials conversion using plasma technology. IEEE Trans. Plasma Sci. 41(12) (2013) 3233. https://doi.org/10.1109/TPS.2013.2275936

4. I. Prysiazhnevych et al. Physical features of atmospheric pressure microdischarge system with vortex gas flows. Open Chemistry 13 (2015) 420. https://doi.org/10.1515/chem-2015-0043

5. I. Hirka, O. Živný, M. Hrabovský. Numerical Modelling of Wood Gasification in Thermal Plasma Reactor. Plasma Chem. Plasma Process. 37(4) (2017) 947. https://doi.org/10.1007/s11090-017-9812-z

6. H. Akiyama, M. Akiyama. Pulsed Discharge Plasmas in Contact with Water and their Applications. IEEJ Transactions on Electrical and Electronic Engineering 16 (2021) 6. https://doi.org/10.1002/tee.23282

7. Y. Chai et al. Free and Wire-Guided Spark Discharges in Water: Pre-Breakdown Energy Losses and Generated Pressure Impulses. Energies 16(13) (2023) 4932. https://doi.org/10.3390/en16134932

8. P.V. Porytskyy, P.D. Starchyk. Influence of metal impurities on the transport properties of multicomponent plasma of underwater discharges. Ukr. J. Phys. 61(8) (2016) 709. https://doi.org/10.15407/ujpe61.08.0715

9. P. Křenek. Thermophysical properties of H2O-Ar plasmas at temperatures 400 - 50,000 K and pressure 0.1 MPa. Plasma Chem. Plasma Process. 28(1) (2008) 107. https://doi.org/10.1007/s11090-007-9113-z

10. J. Aubreton, M.F. Elchinger, J.M. Vinson. Transport coefficients in water plasma: Part I: Equilibrium plasma. Plasma Chem. Plasma Process. 29(2) (2009) 149. http://dx.doi.org/10.1007/s11090-008-9165-8

11. P. Porytsky et al. On the application of the theory of Lorentzian plasma to calculation of transport properties of multicomponent arc plasmas. Eur. Phys. J. D 57(1) (2010) 77. https://doi.org/10.1140/epjd/e2010-00012-1

12. P. Porytsky et al. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method. Phys. Plasmas 20(2) (2013) 023504. https://doi.org/10.1063/1.4790661

13. H. Grad. On the kinetic theory of rarefied gases. Commun. Pur. Appl. Math. 2(4) (1949) 331. https://doi.org/10.1002/cpa.3160020403

14. V.M. Zhdanov. Transport Processes in Multicomponent Plasma (London: CRC Press, 2002) 296 p. https://doi.org/10.1201/9781482265101

15. R.S. Devoto. Transport properties of ionized monoatomic gases. Phys. Fluids 9(6) (1966) 1230. https://doi.org/10.1063/1.1761825

16. R.S. Devoto. Simplified expressions for the transport properties of ionized monoatomic gases. Phys. Fluids 10(10) (1967) 2105. https://doi.org/10.1063/1.1762005

17. K.F. Scheibner, A.U. Hazi, R.J.W. Henry. Electron-impact excitation cross sections for transitions in atomic copper. Phys. Rev. A 35(11) (1987) 4869(R). https://doi.org/10.1103/PhysRevA.35.4869

18. B. Chervy et al. The influence of the cross section of the electron-copper atom collision on the electrical conductivity of Ar-Cu and SF6-Cu plasmas. J. Phys. D 28(10) (1995) 2060. https://doi.org/10.1088/0022-3727/28/10/010

19. O. Zatsarinny et al. Electron-impact excitation of the (3d104s)2S1/2>(3d94s2)2D5/2,3/2 transitions in copper atoms. Phys. Rev. A 81(6) (2010) 062705. https://doi.org/10.1103/PhysRevA.81.062705

20. O.A. Fedorovich et al. Decay characteristics of dense high-voltage pulse plasma discharges in water initiated by the electric explosion of iron conductor. Nucl. Phys. At. Energy 24(4) (2023) 351. (Ukr) https://doi.org/10.15407/jnpae2023.04.351

21. H.E. Wilhelm. Electrical conductivity of nonideal plasma. IEEE Trans. Plasma Sci. 9(2) (1981) 68. https://doi.org/10.1109/TPS.1981.4317392

22. G. Norman, A. Valuev. Electrical conductivity of nonideal plasma. Plasma Physics 21(6) (1979) 531. https://doi.org/10.1088/0032-1028/21/6/002

23. V.A. Alekseev, I.T. Iakubov. Non-ideal plasmas of metal vapours. Phys. Rep. 96(1) (1983) 1. https://doi.org/10.1016/0370-1573(83)90074-1

24. I.T. Iakubov, V.V. Pogosov. Towards a theory of self-compressed metallic clusters. Model of stabilized jellium. Physica A 214(2) (1995) 287. https://doi.org/10.1016/0378-4371(94)00243-M

25. O. Coufal, O. Živný. Composition and thermodynamic properties of thermal plasma with condensed phases. Eur. Phys. J. D 61 (2011) 131. https://doi.org/10.1140/epjd/e2010-10211-3

26. O. Coufal, P. Sezemský, O. Živný. Database system of thermodynamic properties of individual substances at high temperatures. J. Phys. D 38 (2005) 1265. https://doi.org/10.1088/0022-3727/38/8/026

27. S. Xue, M. Boulos. Transient heating and evaporation of metallic particles under plasma conditions. J. Phys. D 52 (2019) 454002. https://doi.org/10.1088/1361-6463/ab37d9

28. G.D. Dhamale et al. Modelling and experimental investigations of composition-dependent heat and mass transfer during Cu-Ni alloy nanoparticle synthesis in a transferred arc helium plasma. J. Phys. D 55 (2022) 375203. https://doi.org/10.1088/1361-6463/ac7a71

29. M. Boselli, M. Gherardi, V. Colombo. 3D modelling of the synthesis of copper nanoparticles by means of a DC transferred arc twin torch plasma system. J. Phys. D 52 (2019) 444001. https://doi.org/10.1088/1361-6463/ab3607

30. A.B. Murphy, D. Uhrlandt. Foundations of high-pressure thermal plasmas. Plasma Sources Sci. Technol. 27 (2018) 063001. https://doi.org/10.1088/1361-6595/aabdce

31. V. Aubrecht, M. Bartlova, O. Coufal. Radiative emission from air thermal plasmas with vapour of Cu or W. J. Phys. D 43 (2010) 434007. https://doi.org/10.1088/0022-3727/43/43/434007

32. B. Chervy. The influence of the presence of tungsten on SF6 arc plasmas. J. Phys. D 29 (1996) 2156. https://doi.org/10.1088/0022-3727/29/8/014

33. S. Peillon et al. Dust sampling in WEST and tritium retention in tokamak-relevant tungsten particles. Nuclear Materials and Energy 24 (2020) 100781. https://doi.org/10.1016/j.nme.2020.100781

34. C. Arnas et al. Micron-sized dust and nanoparticles produced in the WEST tokamak. Nuclear Materials and Energy 36 (2023) 101471. https://doi.org/10.1016/j.nme.2023.101471

35. V.I. Vishnyakov. Ionization balance in low-temperature plasmas with nanosized dust. Ukr. J. Phys. 66(4) (2021) 303. https://doi.org/10.15407/ujpe66.4.303

36. V.I. Vishnyakov et al. Formation of particles in welding fume plasmas: Numerical modeling and experiment. Ukr. J. Phys. 64(5) (2019) 392. https://doi.org/10.15407/ujpe64.5.392

37. R.S. Cohen, L. Spitzer, Jr., P.McR. Routly. The electrical conductivity of an ionized gas. Phys. Rev. 80(2) (1950) 230. https://doi.org/10.1103/PhysRev.80.230

38. L. Spitzer Jr.; R. Härm. Transport phenomena in a completely ionized gas. Phys. Rev. 89(5) (1953) 977. https://doi.org/10.1103/PhysRev.89.977

39. V. Zhovtyansky et al. Electric arc I-V modeling and related plasma spectrometry issues. AIP Advances 12 (2022) 115115. https://doi.org/10.1063/5.0006663