Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 4, pages 357-365.
Section: Atomic Energy.
Received: 03.10.2024; Accepted: 02.12.2024; Published online: 26.12.2024.
PDF Full text (en)
https://doi.org/10.15407/jnpae2024.04.357

Numerical analysis of the self-sustaining traveling wave of nuclear fission propagated by epithermal neutrons in uranium dicarbide medium

M. R. Shcherbyna*, K. O. Shcherbyna, V. O. Tarasov, S. I. Kosenko, S. A. Chernezhenko

Odesa Polytechnic National University, Odesa, Ukraine

*Corresponding author. E-mail address: mykhailo.shcherbyna@yahoo.com

Abstract: This study investigates the self-sustaining traveling wave of nuclear fission in a uranium dicarbide medium by numerically solving a system of partial differential equations. The primary focus is on the neutron diffusion equation and nuclide balance equations, which are crucial for understanding the behavior of fission waves. By solving these equations, we aim to determine the propagation characteristics and assess the stability of nuclear fission waves in uranium dicarbide. Numerical analysis provides significant insights into the dynamics of neutron distribution and nuclide evolution, enhancing our understanding of the underlying physical processes and their implications for traveling wave reactor design.

Keywords: traveling wave reactor, epithermal neutrons, uranium dicarbide, neutron diffusion equation, reactor design, self-sustaining fission wave.

References:

1. L.P. Feoktistov. Neutron-fission wave. Doklady Akademii Nauk SSSR 309 (1989) 864. (Rus)

2. L.P. Feoktistov. Safety is key to the revival of nuclear power. Uspekhi Fizicheskikh Nauk 163(8) (1993) 89. (Rus) https://doi.org/10.3367/UFNr.0163.199308c.0089

3. E. Teller et al. Completely automated nuclear reactors for long-term operation II: Toward a concept-level point-design of a high-temperature, gas-cooled central power station system. Part II. In: Proceedings of the International Conference on Emerging Nuclear Energy Systems (ICENES’96), Obninsk, Russian Federation, 1996, p. 123.

4. V.Ya. Goldin, D.Yu. Anistratov. Fast neutron reactor in a self-regulating neutron-nuclear mode. Matematicheskoye Modelirovaniye 7(10) (1995) 12. (Rus)

5. V.Ya. Goldin, N.V. Sosnin, Yu.V. Troschiev. Fast reactor in self-regulation mode of the 2nd kind. Doklady Rossiyskoy Akademii Nauk, Matematicheskaya Fizika 358(6) (1998) 747. (Rus)

6. A.I. Akhiezer et al. On the theory of propagation of chain nuclear reaction in diffusion approximation. Yadernaya Fizika 62 (1999) 1567. (Rus)

7. H. Sekimoto, K. Ryu, Y. Yoshimura. CANDLE: The new burnup strategy. Nuclear Science and Engineering 139 (2001) 306. https://doi.org/10.13182/NSE01-01

8. H. Sekimoto, K. Ryu. A new reactor burnup concept “CANDLE.” In: Proceeding of PHYSOR 2000, Pittsburgh, May 7-11, 2000.

9. V.D. Rusov et al. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth's core. arXiv:hep-ph/0402039 (2004). https://doi.org/10.48550/arXiv.hep-ph/0402039

10. V.D. Rusov et al. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth’s core. J. Geophys. Res. 112 (2007) B09203. https://doi.org/10.1029/2005JB004212

11. S.P. Fomin et al. Study of self-organizing regime of nuclear burning wave in fast reactor. Problems of Atomic Science and Technology 6(45) (2005) 106. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2005_6/article_2005_6_106.pdf

12. S. Fomin et al. Self-sustained regime of nuclear burning wave in U-Pu fast reactor with Pb-Bi coolant. Problems of Atomic Science and Technology 3(1) (2007) 156. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2007_3/article_2007_3_156.pdf

13. N. Takaki, H. Sekimoto. Potential of CANDLE Reactor on Sustainable Development and Strengthened Proliferation Resistance. Prog. Nucl. Energy 50 (2008) 114. https://doi.org/10.1016/j.pnucene.2007.10.011

14. J. Gilleland et al. Novel reactor designs to burn non-fissile fuels. In: Proceedings of the International Conference on Advances in Nuclear Power Plants (ICAPP 2008), Anaheim, CA, USA, June 8 - 12, 2008, p. 2278. https://inl.elsevierpure.com/en/publications/novel-reactor-designs-to-burn-non-fissile-fuels

15. K.D. Weaver et al. A Once-Through Fuel Cycle for Fast Reactors. J. Eng. Gas Turbines and Power 132 (2010) 102917. https://doi.org/10.1115/1.4000898

16. T. Ellis et al. Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs. In: Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP 2010), San Diego, CA, USA, June 13 - 17, 2010, Paper No. 10189. Proceedings

17. C.E. Ahlfeld et al. Traveling wave nuclear fission reactor, fuel assembly, and method of controlling burnup therein. Patent No.: US 8942338 B2. Date of Patent: Jan. 27, 2015. https://patentimages.storage.googleapis.com/4d/8e/c9/626881a6a4fdf4/US8942338.pdf

18. X.-N. Chen, W. Maschek. Transverse buckling effects on solitary burn-up waves. Annals of Nuclear Energy 32 (2005) 1377. https://doi.org/10.1016/j.anucene.2005.01.012

19. V.D. Rusov et al. Traveling wave reactor and condition of existence of nuclear burning soliton-like wave in neutron-multiplying media. Energies 4(9) (2011) 1337. https://doi.org/10.3390/en4091337

20. X.-N. Chen et al. Fundamental solution of nuclear solitary wave. Energy Conversion and Management 59 (2012) 40. https://doi.org/10.1016/j.enconman.2012.02.005

21. A.G. Osborne, M.R. Deinert. Neutron damage reduction in a traveling wave reactor. In: Proceedings of the Conference on Advances in Reactor Physics (PHYSOR 2012), Knoxville, TN, USA, April 15 - 20, 2012. https://www.osti.gov/etdeweb/biblio/22105673#fullrecord

22. V.D. Rusov et al. Traveling Wave Nuclear Reactor (Kyiv: Publishing group “A.C.C.”, 2013) 156 p. (Rus)

23. A.G. Osborne, M.R. Deinert. Comparison of neutron diffusion and Monte Carlo simulations of a fission wave. Annals of Nuclear Energy 62 (2013) 269. https://doi.org/10.1016/j.anucene.2013.06.023

24. V.D. Rusov et al. On some fundamental peculiarities of the traveling wave reactor. Science and Technology of Nuclear Installations (2015) 703069. https://doi.org/10.1155/2015/703069

25. S. Qvist, J. Hou, E. Greenspan. Design and performance of 2D and 3D-shuffled breed-and-burn cores. Annals of Nuclear Energy 85 (2015) 93. https://doi.org/10.1016/j.anucene.2015.04.007

26. J. Hou et al. 3D in-core fuel management optimization for breed-and-burn reactors. Progress in Nuclear Energy 88 (2016) 58. https://doi.org/10.1016/j.pnucene.2015.12.002

27. V.M. Khotyayintsev, V.M. Pavlovych, Î.M. Khotyayintsevà. Travelling-wave reactor: velocity formation mechanisms. In: Proceedings of the International Conference on the Physics of Reactors: Advances in Reactor Physics to Power the Nuclear Renaissance (PHYSOR 2010), Pittsburgh, PA, USA, May 9-14, 2010. Google books

28. V.M. Khotyayintsev et al. Velocity characteristic and stability of wave solutions for a CANDLE reactor with thermal feedback. Annals of Nuclear Energy 85 (2015) 337. https://doi.org/10.1016/j.anucene.2015.04.044

29. O.M. Khotyayintseva V.M. Khotyayintsev, V.M. Pavlovych. Reactivity in the theory of stationary nuclear fission wave. Nucl. Phys. At. Energy 17(2) (2016) 157. (Ukr) https://doi.org/10.15407/jnpae2016.02.157

30. V.D. Rusov et al. Fast traveling-wave reactor of the channel type. Interdisciplinary Studies of Complex Systems 9 (2017) 36. https://doi.org/10.31392/2307-4515/2017-9.3

31. S.P. Fomin et al. Influence of the radial neutron reflector efficiency on the power of fast nuclear-burning-wave reactor. Annals of Nuclear Energy 148 (2020) 107699. https://doi.org/10.1016/j.anucene.2020.107699

32. V.D. Rusov et al. Ultraslow wave nuclear burning of uranium-plutonium fissile medium on epithermal neutrons. Progress in Nuclear Energy 83 (2015) 105. https://doi.org/10.1016/j.pnucene.2015.03.007

33. D. Ray et al. Build-up and characterization of ultraslow nuclear burnup wave in epithermal neutron multiplying medium. ASME J. of Nucl. Rad. Sci. 8(2) (2022) 021501. https://doi.org/10.1115/1.4049727

34. A.E. Pomysukhina, Yu.P. Sukharev, G.N. Vlasichev. Reactor based on nuclear burning wave in U-Th fuel cycle. Trudy Nizhegorodskogo Gosudarstvennogo Tekhnicheskogo Universiteta (Proceedings of Nizhny Novgorod State Technical University) 2(125) (2019) 136. (Rus)

35. A.O. Kakaev et al. Simulation of the nuclear burning wave of 232Th in the 239Pu enrichment for the neutron energy thermal area. Journal of Physical Studies 24(1) (2020) 1201. https://doi.org/10.30970/jps.24.1201

36. M.R. Shcherbyna, V.O. Tarasov, V.P. Smolyar. Wave nuclear burning in spherical geometry. Journal of Physical Studies 25(2) (2021) 2202. https://doi.org/10.30970/jps.25.2202

37. V. Tarasov et al. Simulation of the traveling wave burning regime on epithermal neutrons. World Journal of Nuclear Science and Technology 13(4) (2023) 73. https://doi.org/10.4236/wjnst.2023.134006

38. V.D. Rusov et al. Neutron moderation theory with thermal motion of the moderator nuclei. The European Physical Journal A 53 (2017) 179. https://doi.org/10.1140/epja/i2017-12363-9

39. V.P. Smolyar et al. Geant4 simulation of the moderating neutrons spectrum. Radiation Physics and Chemistry 212 (2023) 111151. https://doi.org/10.1016/j.radphyschem.2023.111151

40. V.L. Aksenov et al. On the limit of neutron fluxes in the fission-based pulsed neutron sources. Phys. Part. Nucl. Lett. 14(5) (2017) 788. https://doi.org/10.1134/S1547477117050028

41. E.P. Shabalin et al. High-intensity pulsed neutron research reactor based on neptunium. Preprint JINR P13-2017-57 (Dubna, 2017) 18 p.

42. A.V. Arapov et al. Results of the physical start-up of the BR-1M reactor. In: Problems of High Energy Density Physics. XII Kharitonov Thematic Scientific Readings. Reports (Sarov: Publishing House "Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics", 2010) 553 p.