Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 4, pages 341-348.
Section: Nuclear Physics.
Received: 07.06.2024; Accepted: 02.12.2024; Published online: 26.12.2024.
PDF Full text (en)
https://doi.org/10.15407/jnpae2024.04.341

Mean arrival time distributions of extensive air showers at ultrahigh energies

I. F. Hussein1,*, A. A. Al-Rubaiee1, A. F. Mkhaiber2

1 Mustansiriyah University, College of Science, Department of Physics, Baghdad, Iraq
2 University of Baghdad, Department of Physics, College of Education for Pure Sciences, Baghdad, Iraq


*Corresponding author. E-mail address: itabfadhil@uomustansiriyah.edu.iq

Abstract: This paper investigates extensive air showers by estimating the muon and electron mean arrival time distributions at ultrahigh energies for various cosmic-ray particles. The Monte Carlo package AIRES (version 19.04.00) was used to perform simulations at energies of 1019 and 1020 eV. The influence of primary particles (p, 56Fe, and 16O), energies, and zenith angles (0°, 10°, and 20°) on the mean arrival time of muonic and electromagnetic shower disks created in an extensive air shower was examined. Parameterized mean arrival time distributions were calculated for secondary particles e-, e+, and μ, created by proton, iron, and oxygen nuclei at energy 1019 eV in a vertical shower. A polynomial function for these primaries in vertical showers was established using the results of this simulation. The results were compared with the KASCADE-Grande experiment and Sciutto's simulations at energy 1020 eV and θ = 0. In this work the construction of a database that can be used to compute the arrival time of elementary particles is crucial in ultra-high energy ranges through an analytic description between the time structure and the distance distribution.

Keywords: mean arrival time distribution, extensive air shower, AIRES, electromagnetic shower simulations.

References:

1. J.S. Pryga et al. Analysis of the capability of detection of extensive air showers by simple scintillator detectors. Universe 8 (2022) 425. https://doi.org/10.3390/universe8080425

2. A.A. Al-Rubaiee, H.A. Jassim, I.T. Al-Alawy. Modulating the lateral profile in extensive air showers for Yakutsk EAS array. J. Astrophys. Astron. 42 (2021) 52. https://doi.org/10.1007/s12036-021-09751-1

3. P. Sokolsky, G. Thomson. Introduction to Ultra High Energy Cosmic Ray Physics. 2nd ed. (Taylor & Francis Group, LLC, 2020) 174 p. https://doi.org/10.1201/9780429055157

4. R. Haeusler et al. Distortions of experimental muon arrival time distributions of extensive air showers by the observation conditions. Astropart. Phys. 17 (2002) 421. https://doi.org/10.1016/S0927-6505(01)00172-4

5. S.J. Sciutto. The AIRES system for air shower simulations. An update. arXiv: astro-ph/0106044v1 (2001). https://doi.org/10.48550/arXiv.astro-ph/0106044

6. I.F. Hussein, A.A. Al-Rubaiee. Estimating the longitudinal development of atmospheric cascades at high energies. AIP Conf. Proc. 2591 (2023) 030072. https://doi.org/10.1063/5.0121384

7. P. Bassi, G. Clark, B. Rossi. Distribution of arrival times of air shower particles. Phys. Rev. 92 (1953) 441. https://doi.org/10.1103/PhysRev.92.441

8. H. Nogima. Development and status of the Pierre Auger Observatory. Braz. J. Phys. 32(4) (2002) 895. https://doi.org/10.1590/S0103-97332002000500013

9. Pierre Auger Collaboration. Proceedings of the 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3 - 10, 2005 (Mumbai: Tata Institute of Fundamental Research, 2005). https://cds.cern.ch/record/710300?ln=ru

10. T. Antoni et al. Time structure of the extensive air shower muon component measured by the KASCADE experiment. Astropart. Phys. 15(2) (2001) 149. https://doi.org/10.1016/S0927-6505(00)00148-1

11. T. Antoni et al. The information from muon arrival time distributions of high-energy EAS as measured with the KASCADE detector. Astropart. Phys. 18 (2003) 319. https://doi.org/10.1016/S0927-6505(02)00153-6

12. M. Ambrosio et al. Time structure of individual extensive air showers. Astropart. Phys. 11 (1999) 437. https://doi.org/10.1016/S0927-6505(99)00012-2

13. N. Inoue et al. Arrival-time distribution of air-shower electrons near the core. J. Phys. G 15 (1989) 1899. https://doi.org/10.1088/0954-3899/15/12/014

14. W.E. Hazen, H.Y. Dai, E.S. Hazen. Study of a mini-array for the Linsley effect in cosmic-ray air showers. J. Phys. G 15 (1989) 113. https://doi.org/10.1088/0954-3899/15/1/011

15. P.K.F. Grieder. Extensive Air Showers. High Energy Phenomena and Astrophysical Aspects – A Tutorial, Reference Manual and Data Book. Vol. I (Berlin Heidelberg, Springer-Verlag, 2010) 1118 p. https://doi.org/10.1007/978-3-540-76941-5

16. C.P. Woidneck, E. Bohm. The longitudinal particle distribution in the extensive air shower disc. J. Phys. A 8 (1975) 997. https://doi.org/10.1088/0305-4470/8/6/016

17. E.J. de Villiers et al. The arrival time distribution of muons in extensive air showers. J. Phys. G 12 (1986) 547. https://doi.org/10.1088/0305-4616/12/6/013

18. M. Agnetta et al. Time structure of the extensive air shower front. Astropart. Phys. 6 (1997) 301. https://doi.org/10.1016/S0927-6505(96)00064-3

19. M. Ambrosio et al. Interpretation of the time structure of the EAS disc measured by the GREX/COVER_PLASTEX experiment. Astropart. Phys. 7 (1997) 329. https://doi.org/10.1016/S0927-6505(97)00029-7

20. S. Sciutto. AIRES. User's Manual and reference guide. Version 2.8.4a (2006).

21. S. Sciutto. AIRES: a System for Air Shower Simulations. User's guide and reference manual. Version 2.2.0 (1999). https://doi.org/10.48550/arXiv.astro-ph/9911331

22. S.J. Sciutto. AIRES. User's manual and reference guide. Version 2.6.0 (La Plata, Argentina, 2002). www.fisica.unlp.edu.ar/auger/aires

23. S.J. Sciutto. AIRES: a System for Air Shower Simulations. User's guide and reference manual. Version 19.04.00 (2019). https://doi.org/10.48550/arXiv.astro-ph/9911331

24. L. Nellen (for the Pierre Auger Collaboration) The observation of a muon deficit in simulations from data of the Pierre Auger Observatory. J. Phys.: Conf. Ser. 409 (2013) 012107. https://doi.org/10.1088/1742-6596/409/1/012107

25. G. Navarra et al. KASCADE-Grande: a large acceptance, high-resolution cosmic-ray detector up to 1018 eV. Nucl. Instrum. Methods A 518 (2004) 207. https://doi.org/10.1016/j.nima.2003.10.061

26. T. Antoni et al. The cosmic-ray experiment KASCADE. Nucl. Instrum. Methods A 513 (2003) 490. https://doi.org/10.1016/S0168-9002(03)02076-X

27. W.D. Apel et al. Time structure of the EAS electron and muon components measured by the KASCADE-Grande experiment. Astropart. Phys. 29 (2008) 317. https://doi.org/10.1016/j.astropartphys.2008.02.004