ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Possible cosmic rays origin of periodic components in gamma-background signals
A. D. Skorbun*
Institute for Safety Problems of Nuclear Power Plants, National Academy of Science of Ukraine, Chornobyl, Ukraine
*Corresponding author. E-mail address:
anskorbun@gmail.com
Abstract: Analysis of a long-term regular series of measurements of signals from the automated system of radiation control (ASRC) in the Chornobyl exclusion zone revealed many features, which are reproduced for different observation posts and which we will try to consider from the general position of the influence of cosmic factors. It is implied that these features are clearly linked to certain astronomical phenomena. It is possible to propose a model that describes all these phenomena, namely the possibility of manifestations of the influence of cosmic rays. Such a mechanism as a cause of changes in radioactive background signals in general and in ASRC signals, in particular, has not been considered previously. Probably because its contribution was considered small.
Keywords: gamma-background, Chornobyl exclusion zone, count rate variability, cosmic rays.
References:1. A.D. Skorbun, A.I. Spirin, B.M. Sploshnoi. Analysis of long-term gamma-background measurements in the Chornobyl exclusion zone. In: The XXV Annual Scientific Conference of the Institute for Nuclear Research, National Academy of Sciences of Ukraine. Kyiv, April 16 - 20, 2018. Book of Abstracts (Kyiv, 2018) p. 78. (Ukr) https://kinr.kyiv.ua/Annual_Conferences/KINR2018/pdf/book%20of%20%20abstracts_2018.pdf
2. A.D. Skorbun, O.A. Kuchmagra, B.M. Sploshnoy. Comparative analysis of long-term gamma-background measurements by different detectors in the Chîrnobyl Exclusion Zone. HAL Science Ouverte (2021) 12 p. https://hal.science/hal-03195000
3. À.D. Skorbun et al. Periodicity in signals of long-term gamma background measurements in the Chornobyl exclusion zone. Nuclear Power and the Environment 2(14) (2019) 39. (Ukr) https://doi.org/10.31717/2311-8253.19.2.6
4. A.D. Skorbun, B.M. Sploshnoi, O.Yu. Zelenskyi. Observation of periodic fluctuations in the dose rate of gamma-radiation in the Chornobyl exclusion zone. Nucl. Phys. At. Energy 24 (2023) 225. https://doi.org/10.15407/jnpae2023.03.225
5. M.H. McDuffie et al. Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory. arXiv:2012.00153 (2020). 30 p. https://doi.org/10.48550/arXiv.2012.00153
6. S. Glasstone. Atom, Atomic Nucleus, Atomic Energy: Development of Modern Understanding of the Atom and Atomic Energy. Transl. from Eng. by M.N. Flerova. L.A. Artsimovich (Ed.) (Ìoskva: Izdatelstvo Inostrannaya Literatura, 1961) 648 p. (Rus) Google books
7. https://www.epa.gov/radtown/cosmic-radiation
8. G. Cinelli et al. European annual cosmic-ray dose: estimation of population exposure. J. Maps 13(2) (2017) 812. https://doi.org/10.1080/17445647.2017.1384934
9. K.G.C. Raptis et al. External effective dose from natural radiation for the Umbria region (Italy). J. Maps 18(2) (2022) 461. https://doi.org/10.1080/17445647.2022.2093659
10. W. Friedberg, K. Copeland. Ionizing Radiation in Earth’s Atmosphere and in Space Near Earth. Final Report. DOT/FAA/AM-11/9 (Oklahoma City, OK. FAA Civil Aerospace Medical Institute, 2011) 32 p. https://www.radsafetypro.com/uploads/6/5/3/7/65379977/201109.pdf
11. D. Mrdja et al. Study of radiation dose induced by cosmic-ray origin low-energy gamma rays and electrons near sea level. J. Atmos. Sol.-Terr. Phys. 123 (2015) 55. https://doi.org/10.1016/j.jastp.2014.12.007
12. R. Banjanac et al. On the omnipresent background gamma radiation of the continuous spectrum. Nucl. Instrum. Methods A 745 (2014) 7. https://doi.org/10.1016/j.nima.2014.01.065
13. A.D. Skorbun. anomalies in radioactive half period: new look. HAL Science Ouverte (2021) 12 p. https://hal.science/hal-03182879v1
14. S.E. Shnoll. Cosmophysical Factors in Stochastic Processes (Rehoboth, NM, USA, American Research Press, 2012) 435 p. https://www.ptep-online.com/books/shnoll2012.pdf
15. S.E. Shnoll. On the Cosmophysical Origin of Random Processes. Open Letter to the Scientific Community on the Basis of Experimental Results Obtained During 1954 - 2014. Progress in Physics 10(4) (2014) 207. https://www.ptep-online.com/files/pip/pip-2014-04.pdf
16. Yu.A. Baurov, Yu.G. Sobolev, Yu.V. Ryabov. New force, global anisotropy and the changes in β-decay rate of radioactive elements. Am. J. Astron. Astrophys. 2(6-1) (2014) 8. https://doi.org/10.11648/j.ajaa.s.2014020601.12
17. Astronomical Calendar. 2021. Issue 67. A.P. Vidmachenko (Ed.). Main Astronomical Observatory NAS of Ukraine (Kyiv: Akademperiodyka, 2020). 284 p. (Ukr) https://www.mao.kiev.ua/docs/artid080_calendar-2021.pdf
18. D. Shahbazi-Gahrouei, M. Gholami, S. Setayandeh. A review on natural background radiation. Adv. Biomed. Res. 2 (2013) 65. https://doi.org/10.4103/2277-9175.115821
19. E.V. Sobotovich. Geochemistry of Technogenic Radionuclides (Kyiv: Naukova Dumka, 2002) 332 p. (Rus)
20. J. Chen et al. An estimation of Canadian population exposure to cosmic rays. Radiat. Environ. Biophys. 48 (2009) 317. https://doi.org/10.1007/s00411-009-0226-z
21. L. Anchordoqui et al. High energy physics in the atmosphere: phenomenology of cosmic ray air showers. Ann. Phys. 314 (2004) 145. https://doi.org/10.1016/j.aop.2004.07.003
22. P.A. Sturrock et al. Concerning the variability of beta-decay measurements. arXiv:1510.05996 (2015) 12 p. https://doi.org/10.48550/arXiv.1510.05996