ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Performance and application of scanning nuclear microprobe at the Institute of Applied Physics of the National Academy of Sciences of Ukraine
A. G. Ponomarev*, S. V. Kolinko, V. A. Rebrov, D. V. Magilin, I. H. Ihnatiev, V. I. Voznyi, V. F. Salivon
Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine
*Corresponding author. E-mail address:
ponom56@gmail.com
Abstract: The scanning nuclear microprobe of the Institute of Applied Physics of the National Academy of Sciences of Ukraine is an analytical channel based on the compact electrostatic accelerator "Sokol" of the Van de Graaff type with the maximum voltage at the high-voltage terminal of 2 MV and is designed for local non-destructive analysis of samples of various origins with high sensitivity (~1 ppm), as well as for the fabrication of three-dimensional small structures of high quality using proton beam writing. The resolution of the microprobe is about 3 μm with a beam current of I ~ 100 pA and 0.6 μm with I ~1 pA. The maximum scanning raster with a focused beam on the sample surface is 1 × 1 mm2. The microprobe implements the techniques of particle-induced X-ray emission, Rutherford backscattering, and secondary electron microscopy. The article also gives examples of the use of the nuclear microprobe in physical research.
Keywords: electrostatic accelerator, scanning nuclear microprobe, probe forming system, proton beam writing, X-ray diffraction grating, quadrupole magnetic lens, particle-induced X-ray emission, Rutherford backscattering.
References:1. R. Meesat et al. Micro-PIXE study of metal loss from dental amalgam. Nucl. Instrum. Meth. B 404 (2017) 106. https://doi.org/10.1016/j.nimb.2017.01.024
2. S. Matsuyama et al. Current status of the Tohoku microbeam system at Tohoku University and other facilities. Nucl. Instrum. Meth. B 539 (2023) 79. https://doi.org/10.1016/j.nimb.2023.03.023
3. J. Cruz et al. Surface analysis of corroded XV-XVI century copper coins by μ-XRF and μ-PIXE/μ-EBS self-consistent analysis. Materials Characterization 161 (2020) 110170. https://doi.org/10.1016/j.matchar.2020.110170
4. V. Nxumalo et al. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa. Nucl. Instrum. Meth. B 404 (2017) 114. https://doi.org/10.1016/j.nimb.2016.10.034
5. P. Vavpetič et al. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe. Nucl. Instrum. Meth. B 348 (2015) 147. https://doi.org/10.1016/j.nimb.2015.01.063
6. F. Picollo et al. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography. Nucl. Instrum. Meth. B 348 (2015) 199. https://doi.org/10.1016/j.nimb.2014.11.119
7. E. Ebraert et al. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass. Nucl. Instrum. Meth. B 389-390 (2016) 5. https://doi.org/10.1016/j.nimb.2016.11.014
8. F. Picollo et al. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography. Nucl. Instrum. Meth. B 404 (2017) 193. https://doi.org/10.1016/j.nimb.2017.01.062
9. J. Gong et al. All-silicon subwavelength structural coloration fabricated through proton beam writing and reactive ion etching. Nucl. Instrum. Meth. B 469 (2020) 52. https://doi.org/10.1016/j.nimb.2020.03.001
10. I. Rajta et al. Si micro-turbine by proton beam writing and porous silicon micromachining. Nucl. Instrum. Meth. B 267 (2009) 2292. https://doi.org/10.1016/j.nimb.2009.03.087
11. S. Ditalia Tchernij et al. A multi-electrode two-dimensional position sensitive diamond detector. Appl. Phys. Lett. 124 (2024) 223502. https://doi.org/10.1063/5.020562112. V.E. Storizhko et al. The Sumy scanning nuclear microprobe: Design features and first tests. Nucl. Instrum. Meth. B 260 (2007) 49. https://doi.org/10.1016/j.nimb.2007.01.250
13. A.A. Ponomarov, V.I. Miroshnichenko, A.G. Ponomarev. Influence of the beam current density distribution on the spatial resolution of a nuclear microprobe. Nucl. Instrum. Meth. B 267 (2009) 2041. https://doi.org/10.1016/j.nimb.2009.03.091
14. D.V. Magilin et al. Performance of the Sumy nuclear microprobe with the integrated probe-forming system. Nucl. Instrum. Meth. B 267 (2009) 2046. https://doi.org/10.1016/j.nimb.2009.03.015
15. V.A. Brazhnik et al. Numerical optimization of magnetic nonlinear quadrupole systems in an ion microprobe with given spot size on the target. Nucl. Instrum. Meth. B 104 (1995) 92. https://doi.org/10.1016/0168-583X(95)00587-0
16. V.A. Brazhnik et al. Optimization of magnetic quadrupole probe forming systems based on separated Russian quadruplet. Nucl. Instrum. Meth. B 174 (2001) 385. https://doi.org/10.1016/S0168-583X(00)00523-1
17. A.G. Ponomarev et al. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets. Nucl. Instrum. Meth. B 201 (2003) 637. https://doi.org/10.1016/S0168-583X(02)02229-2
18. A.A. Ponomarova et al. One-stage probe-forming systems with quadrupole lenses excited by individual power supplies. Nucl. Instrum. Meth. B 269 (2011) 2202. https://doi.org/10.1016/j.nimb.2011.02.025
19. K.I. Melnik, D.V. Magilin, A.G. Ponomarev. Experimental results of microprobe focusing by quadruplet with four independent lens power supplies. Nucl. Instrum. Meth. B 306 (2013) 17. https://doi.org/10.1016/j.nimb.2013.01.037
20. A.A. Ponomarova et al. The precision proton beam formation in the probe system with individual power supplies of magnetic quadrupole lenses (experimental results). Journal of Nano- and Electronic Physics 5(1) (2013) 01030. (Rus) https://jnep.sumdu.edu.ua/download/numbers/2013/1/articles/jnep_2013_V5_01030.pdf
21. S.V. Kolinko, A.G. Ponomarev. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution. Nucl. Instrum. Meth. B 373 (2016) 110. https://doi.org/10.1016/j.nimb.2016.03.009
22. V.A. Rebrov et al. The new design of magnetic quadrupole lens doublet manufactured from a single piece. Nucl. Instrum. Meth. B 260 (2007) 34. https://doi.org/10.1016/j.nimb.2007.01.275
23. O.S. Lapin et al. Precise centering method for triplet of magnetic quadrupole lenses using single rigid frame. Nucl. Instrum. Meth. B 404 (2017) 41. https://doi.org/10.1016/j.nimb.2017.01.056
24. A.G. Ponomarev et al. The new Sumy nuclear microprobe with single-stage quintuplet lens system. Nucl. Instrum. Meth. B 456 (2019) 21. https://doi.org/10.1016/j.nimb.2019.06.048
25. S.V. Kolinko et al. Beam scanning controller for proton-beam writing. East European Journal of Physics 3 (2021) 134. https://doi.org/10.26565/2312-4334-2021-3-20
26. A.G. Ponomarev, A.À. Ponomarîv. Beam optics in nuclear microprobe: A review. Nucl. Instrum. Meth. B 497 (2021) 15. https://doi.org/10.1016/j.nimb.2021.03.024
27. A.A. Valter et al. Evaluation of a calcium-rich uraninite composition by electron and proton microprobe. Mineralogical Journal (Ukraine) 35(3) (2013) 48. https://mineraljournal.org.ua/sites/default/files/sites/default/files/MJ_3-2013.pdf
28. A.A. Valter et al. Spatial investigation of some uranium minerals using nuclear microprobe. Physics and Chemistry of Minerals 45 (2018) 533. https://doi.org/10.1007/s00269-017-0940-z
29. A.G. Ponomarev, V.À. Rebrov, S.V. Kolinko. Proton beam writing device based on electrostatic accelerator for 3D micro- and nano-structures fabrication. Science and Innovation 15(4) (2019) 55. https://doi.org/10.15407/scine15.04.055
30. A.G. Ponomarev et al. Using of proton beam writing techniques for fabrication of micro diffraction gratings. Problems of Atomic Science and Technology 4(116) (2018) 285. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2018_4/article_2018_4_285.pdf