Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 3, pages 228-240.
Section: Nuclear Physics.
Received: 05.04.2024; Accepted: 28.08.2024; Published online: 27.09.2024.
PDF Full text (en)
https://doi.org/10.15407/jnpae2024.03.228

Relativistic mean field analysis of triaxial deformation for nuclei near the neutron drip line

A. A. Alzubadi*, S. M. Aldulaimi

Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq

*Corresponding author. E-mail address: ali.abdullatif@sc.uobaghdad.edu.iq

Abstract: The present study focuses on the deformation of neutron-rich nuclei near the neutron drip line. The nuclei of interest include 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 166Sm, and 176Er. The relativistic Hartree - Bogoliubov (RHB) approach with effective density-dependent point coupling is utilized to investigate the triaxial deformation, and Skyrme - Hartree - Fock + Bardeen - Cooper - Schrieffer is used to analyze the axial deformation. The study aimed to understand the interplay between nuclear forces, particle interactions, and shell structure to gain insights into the unique behavior of neutron-rich nuclei. Despite these nuclei containing magic numbers, their shapes are still affected by the nucleons' collective behavior and energy levels. As the number of neutrons increases, the shape smoothly transitions from spherical to triaxial and then to prolate. The axial deformation analysis confirmed the results of the triaxial deformation analysis using the RHB method. An imbalance in the number of protons and neutrons can affect pairing energy, where extra neutrons can reduce overall pairing energy, and protons can disrupt the nucleon pairing due to stronger Coulomb repulsion between them.

Keywords: relativistic mean-field, Hartree - Fock + Bardeen - Cooper - Schrieffer, triaxial deformation, neutron dripline, collective motion.

References:

1. K. Heyde. Basic Ideas and Concepts in Nuclear Physics. 2nd edition (Bristol and Philadelphia: Institute of Physics Publishing, 1999) 524 p. https://library.usi.edu/record/268997

2. N. Takigawa, K. Washiyama. Fundamentals of Nuclear Physics (Tokyo-Japan: Springer, 2017) 269 p. https://doi.org/10.1007/978-4-431-55378-6

3. A. Shukla, S. K. Patra (Eds.). Nuclear Structure Physics (Taylor & Francis Group, 2020) 416 p. https://doi.org/10.1201/9780429288647

4. W. Koepf, P. Ring. Has the nucleus 24Mg a triaxial shape? a relativistic investigation. Phys. Lett. B 212 (1988) 397. https://doi.org/10.1016/0370-2693(88)91786-8

5. G.A. Lalazissis, M.M. Sharma. Ground-state properties of exotic nuclei near Z = 40 in the relativistic mean-field theory. Nucl. Phys. A 586 (1995) 201. https://doi.org/10.1016/0375-9474(94)00519-S

6. D. Hirata et al. Triaxial deformation of unstable nuclei in the relativistic mean-field theory. Nucl. Phys. A 609 (1996) 131. https://doi.org/10.1016/0375-9474(96)00298-9

7. J.M. Yao et al. Candidate multiple chiral doublets nucleus 106Rh in a triaxial relativistic mean-field approach with time-odd fields. Phys. Rev. C 79 (2009) 067302. https://doi.org/10.1103/PhysRevC.79.067302

8. Z.P. Li et al. Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er. Phys. Rev. C 81 (2010) 064321. https://doi.org/10.1103/PhysRevC.81.064321

9. J.M. Yao. Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes. Phys. Rev. C 83 (2011) 014308. https://doi.org/10.1103/PhysRevC.83.014308

10. B.-N. Lu et al. Multidimensionally-constrained relativistic mean-field models and potential-energy surfaces of actinide nuclei. Phys. Rev. C 89 (2014) 014323. https://doi.org/10.1103/PhysRevC.89.014323

11. W.X. Xue et al. Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties. Phys. Rev. C 91 (2015) 024327. https://doi.org/10.1103/PhysRevC.91.024327

12. H. Abusara, S. Ahmad. Shape evolution in Kr, Zr, and Sr isotopic chains in covariant density functional theory. Phys. Rev. C 96 (2017) 064303. https://doi.org/10.1103/PhysRevC.96.064303

13. J.-U. Nabi et al. The nuclear ground-state properties and stellar electron emission rates of 76Fe, 78Ni, 80Zn, 126Ru, 128Pd and 130Cd using RMF and pn-QRPA models. Nucl. Phys. A 1015 (2021) 122278. https://doi.org/10.1016/j.nuclphysa.2021.122278

14. V. Kumar et al. The microscopic studies of the even-even 12-28O, 34-60Ca, 48-80Ni, and 100-134Sn using covariant density functional theory. Nucl. Phys. A 1022 (2022) 122429. https://doi.org/10.1016/j.nuclphysa.2022.122429

15. Y.-T. Rong et al. Anatomy of octupole correlations in 96Zr with a symmetry-restored multidimensionally-constrained covariant density functional theory. Phys. Lett. B 840 (2023) 137896. https://doi.org/10.1016/j.physletb.2023.137896

16. T. Niksic et al. DIRHB – A relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185(6) (2014) 1808. https://doi.org/10.1016/j.cpc.2014.02.027

17. H.A. Bahr, A.A. Alzubadi. Relativistic and nonrelativistic mean field analysis of the shell evolution in 44-52Ar isotopes. Int. J. Mod. Phys. E 31(4) (2022) 2250029. https://doi.org/10.1142/S021830132250029X

18. A.A. Allami, A.A. Alzubadi. Study of the nuclear structure of some exotic nuclei using nonrelativistic and relativistic mean-field methods. Int. J. Mod. Phys. E 29(12) (2020) 2050090. https://doi.org/10.1142/S0218301320500901

19. W. Koepf, P. Ring. A relativistic description of rotating nuclei: The yrast line of 20Ne. Nucl. Phys. A 493(1) (1989) 61. https://doi.org/10.1016/0375-9474(89)90532-0

20. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin: Springer-Verlag, 1980). https://doi.org/10.1007/978-3-642-61852-9

21. A. Staszczak et al. Augmented Lagrangian method for constrained nuclear density functional theory. Eur. Phys. J. A 46 (2010) 85. https://doi.org/10.1140/epja/i2010-11018-9

22. A. Bohr, B.R. Mottelson. Nuclear Structure. In 2 volumes (New York, USA: Benjamin, 1975) 1256 p. https://doi.org/10.1142/3530

23. A.A. Alzubadi. Investigation of nuclear structure of 30-44S isotopes using spherical and deformed Skyrme-Hartree-Fock method. Indian J. Phys. 89 (2015) 619. https://doi.org/10.1007/s12648-014-0614-3

24. A.A. Alzubadi, R.S. Obaid. An analysis of the tensor force and pairing correlation on the disappearance of nuclear magicity at N = 28 region. Braz. J. Phys. 53 (2023) 99. https://doi.org/10.1007/s13538-023-01305-w

25. J.-P. Delaroche et al. Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81 (2010) 014303. https://doi.org/10.1103/PhysRevC.81.014303

26. P. Möller et al. Nuclear ground-state masses and deformations: FRDM (2012). At. Data Nucl. Data Tables 109-110 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.002

27. A. Gade, S.N. Liddick. Shape coexistence in neutron-rich nuclei. J. Phys. G 43 (2016) 024001. https://doi.org/10.1088/0954-3899/43/2/024001