ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Study of spectroscopic properties of some nuclei participating in (μ-, e-) lepton flavor violation process
P. Verma1, P. Pandey1, K. Chaturvedi2,*
1 Department of Physics, Bundelkhand University, Jhansi, India
2 Department of Physics, Siddharth University, Kapilvastu, Siddharthnagar, India
*Corresponding author. E-mail address:
kaushlendra_c@yahoo.co.in
Abstract: Lepton flavor violation (LFV) is a clear sign of new physics beyond the standard model. A prominent process concerning LFV is μ- ⟶ e- conversion in a muonic atom. In the present work, we have investigated the spectroscopic properties of three nuclei namely 24Mg, 32S, and 44Ca which participate in this μ- ⟶ e- lepton flavor violating process. We have used USD interaction for sd shell nuclei namely 24Mg and 32S and Z20 Bonn interaction for pf shell nucleus 44Ca, to calculate these properties.
Keywords: lepton flavor violation, muon to electron conversion, spectroscopic properties, muon sources.
References:1. A. Van Der Schaaf. Forbidden muon decays. Prog. Part. Nucl. Phys. 31 (1993) 1. https://doi.org/10.1016/0146-6410(93)90047-J
2. T.S. Kosmas, G.K. Leontaris, J.D. Vergados. Lepton flavor non-conservation. Prog. Part. Nucl. Phys. 33 (1994) 397. https://doi.org/10.1016/0146-6410(94)90047-7
3. Y. Kuno, Y. Okada. Muon decay and physics beyond the standard model. Rev. Mod. Phys. 73 (2001) 151. https://doi.org/10.1103/RevModPhys.73.151
4. A. Faessler et al. Scalar meson mediated (μ- - e-) nuclear conversion. Phys. Rev. D 72 (2005) 075006. https://doi.org/10.1103/PhysRevD.72.075006
5. R.H. Bernstein, P.S. Cooper. Charged lepton flavor violation: An experimenter's guide. Phys. Rept. 532 (2013) 27. https://doi.org/10.1016/j.physrep.2013.07.002
6. Y. Kuno. A search for muon-to-electron conversion at J-PARC: the COMET experiment. Prog. Theor. Exp. Phys. 2013(2) (2013) 022C01. https://doi.org/10.1093/ptep/pts089
7. J.M. Cline, A. Diaz-Furlong, J. Ren. Completing constrained flavor violation: Lepton masses, neutrinos, and leptogenesis. Phys. Rev. D 93 (2016) 036009. https://doi.org/10.1103/PhysRevD.93.036009
8. L. Calibbi, G. Signorelli. Charged lepton flavour violation: An experimental and theoretical introduction. Riv. Nuovo Cim. 41(2) (2018) 71. https://doi.org/10.1393/ncr/i2018-10144-0
9. M. Tanabashi et al. Review of particle physics. Phys. Rev. D 98 (2018) 030001. https://doi.org/10.1103/PhysRevD.98.030001
10. S. Weinberg, G. Feinberg. Electromagnetic transitions between μ meson and electron. Phys. Rev. Lett. 3 (1959) 244. https://doi.org/10.1103/PhysRevLett.3.244.2
11. W.J. Marciano, A.I. Sanda. Reaction μ- + nucleus ⟶ e- + nucleus in Gauge theories. Phys. Rev. Lett. 38 (1977) 1512. https://doi.org/10.1103/PhysRevLett.38.1512
12. E. Caurier. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77 (2005) 427. https://doi.org/10.1103/RevModPhys.77.427
13. E. Caurier, F. Nowacki. Present status of shell model techniques. Acta Physica Polonica B 30 (1999) 705. https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=30&page=705
14. M. Honma et al. New effective interaction for pf-shell nuclei and its implications for the stability of the N = Z = 28 closed core. Phys. Rev. C 69 (2004) 034335. https://doi.org/10.1103/PhysRevC.69.034335
15. M. Sakai. Quasi-bands in even-even nuclei. At. Data Nucl. Data Tables 31 (1984) 399. https://doi.org/10.1016/0092-640X(84)90010-X
16. S. Raman et al. Transition probability, B(E2)↑, from the ground to the first-excited 2+ state of even-even nuclides. At. Data Nucl. Data Tables 36 (1987) 1. https://doi.org/10.1016/0092-640X(87)90016-7
17. N.J. Stone. Tables of nuclear magnetic dipole and electric quadrupole moments. At. Data Nucl. Data Tables 90 (2005) 75. https://doi.org/10.1016/j.adt.2005.04.001