ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Dose estimates of 137Cs in bank voles inhabiting research sites within the Chornobyl Exclusion Zone considering the age-related dynamics of change in physiological parameters
I. P. Drozd, V. V. Pavlovskyi*
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
vladvpav@gmail.com
Abstract: Methods for dose estimation of 137Cs in mouse-like rodents, specifically bank voles (Myodes glareolus), commonly found within the research sites in the Chornobyl Exclusion Zone, are being proposed. The International Commission on Radiological Protection recommends using the specially developed "BiotaDC" software, but it needs to be adapted to solve specific applied issues. It is shown that the "BiotaDC" approach adequately describes dose accumulation of 137Cs for external exposure inside nest chambers if the mean integral value of soil activity concentration at a depth of 0.5 m is used, for external exposure above soil – if the mean integral value of soil activity concentration at a depth of 0.2 m is used. However, the authors propose a method considering the age of animals at the time of capture and the age-related dynamics of changes in such parameters as excretion and accumulation of radioisotopes for internal dose estimation using the "BiotaDC" software. A detailed dose estimation algorithm is being proposed. Dose estimates for internal irradiation according to the authors' method and the method of the International Commission on Radiological Protection are being compared.
Keywords: absorbed dose, mouse-like rodents, bank vole, cesium, Chornobyl Exclusion Zone.
References:1. I.M. Vyshnevskyi et al. Chamber models in radiobiology. Dopovidi Natsionalnoi Akademii Nauk Ukrainy 1 (2015) 146. (Ukr)https://doi.org/10.15407/dopovidi2015.01.146
2. V.P. Mashkovich, A.V. Kudryavtseva. Protection from Ionizing Radiation. Reference Book (Moskva: Energoatomizdat, 1995) 496 p. (Rus)
3. V.F. Kozlov. Reference Book on Radiation Safety. 3rd ed. (Moskva: Energoatomizdat, 1987) 191 p. (Rus)
4. D.P. Osanov. Dosimetry and Radiation Biophysics of Skin (Moskva: Energoatomizdat, 1990) 233 p. (Rus)
5. R.K. Chesser et al. Concentrations and dose rate estimates of 134, 137 Cesium and 90 Strontium in small mammals at Chornobyl, Ukraine. Envir. Toxicol. and Chemistry 19(2) (2000) 305. https://doi.org/10.1002/etc.5620190209
6. V.A. Gaychenko, O.Yu. Krainiuk. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone. Nucl. Phys. At. Energy 16(3) (2015) 287. https://doi.org/10.15407/jnpae2015.03.287
7. Yu.A. Maklyuk et al. Values and structure of dose burdens in small mammals of the Chernobyl zone in 19 years after the accident. Nucl. Phys. At. Energy 3(21) (2007) 81. (Rus) https://jnpae.kinr.kyiv.ua/21(3)/Articles_PDF/jnpae-2007-3(21)-0081-Maklyuk.pdf
8. Dose coefficients for non-human biota environmentally exposed to radiation. ICRP Publication 136. Ann. ICRP 46(2) (2017) 1. https://doi.org/10.1177/0146645317728022
9. AnAge entry for Myodes glareolus. AnAge: The Animal Ageing and Longevity Database. http://www.genomics.senescence.info/species/entry.php?species=Myodes_glareolus
10. B.I. Sheftel. Metods for estimating the abundance of small mammals. Russian Journal of Ecosystem Ecology 3(3) (2018) 1. https://doi.org/10.21685/2500-0578-2018-3-4
11. I.P. Drozd, V.V. Pavlovsky. Rapid assessment of physiological parameters of the red mole (Myodes glareolus) used for dosimetric studies. Ekolohichni Nauky 1(52) (2024) 151. (Ukr) https://doi.org/10.32846/2306-9716/2024.eco.1-52.2.28
12. Environmental Protection - the Concept and Use of Reference Animals and Plants. ICRP Publication 108. Ann. ICRP 38(4-6) (2008) 1. https://doi.org/10.1016/j.icrp.2009.04.001
13. M. Daniel. Experimental studies on inhabitants of nests of small forest mammals. Folia Parasitologica 22(3) (1975) 265. https://folia.paru.cas.cz/pdfs/fol/1975/03/15.pdf
14. E.S. Manaeva et al. Biological activity of soils in the settlements of southern (Microtus rossiaemeridionalis) and bank (Clethrionomys glareolus) voles. Biol. Bull. Russ. Acad. Sci. 41 (2014) 80. https://doi.org/10.1134/S1062359013040110
15. P. Mikus. Recent vertebrate and invertebrate burrows in lowland and mountain Fluvial environments (SE Poland). Water 12(12) (2020) 3413. https://doi.org/10.3390/w12123413
16. O.I. Evstigneev, O.V. Solonina. Red-backed vole and species diversity of grass cover in broad-leaved forests. Russian Journal of Ecosystem Ecology 5(4) (2020) 18. (Rus) https://doi.org/10.21685/2500-0578-2020-4-1
17. Yu. Khomutinin et al. Optimising sampling strategies for emergency response: Soil sampling. J. Environm. Radioactivity 222 (2020) 106344. https://doi.org/10.1016/j.jenvrad.2020.106344
18. R.E. Antwis et al. Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone. Journal of Animal Ecology 90(9) (2021) 2172. https://doi.org/10.1111/1365-2656.13507
19. I.P. Drozd, V.V. Pavlovsky. Fundamentals of Dosimetry of Ionizing Radiation for Workers of Non-Physical Specialties (Lviv: "BONA" Publishing House, 2022) 128 p. (Ukr)
20. V.F. Zhuravlev. Toxicology of Radioactive Substances (Moskva: Energoatomizdat, 1990) 336 p. (Rus)
21. C.R. White, R.S. Seymour. Allometric scaling of mammalian metabolism. J. Exp. Biol. 208 (2005) 1611. https://doi.org/10.1242/jeb.01501
22. P.A. Marquet et al. Scaling and power-laws in ecological systems. J. Exp. Biol. 208 (2005) 1749. https://doi.org/10.1242/jeb.01588
23. S. Agostinelli et al. Geant4 – a simulation toolkit. Nucl. Instrum. Meth. A 506(3) (2003) 250. https://doi.org/10.1016/S0168-9002(03)01368-8