ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The absorbed dose rate of external exposure to representatives of ichthyofauna of lakes in the Chornobyl Exclusion Zone
A. Ye. Kaglyan1,* , D. ². Gudkov1, V. V. Belyaev1, S. ². ʳreev2, L. P. Yurchuk1, M. Î. Men'kovska1
1 Institute of Hydrobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 State Specialized Enterprise "Ecocentre", State Agency of Ukraine on Exclusion Zone Management, Chornobyl, Ukraine
*Corresponding author. E-mail address:
alex_kt983@ukr.net
Abstract: The limits of the average value of the average annual external radiation dose rate of fishes from four lakes (with different degrees of radionuclide pollution of ichthyofauna representatives) of the Chornobyl Exclusion Zone as of 2021 are given, namely: Azbuchyn Lake (4 - 33 μGy/h), Vershyna Lake (3 - 26 μGy/h), Glyboke Lake (2 - 15 μGy/h) and Plyutovyshche Lake (0.02 - 0.16 μGy/h). Bottom-dwelling fish species such as tench and Prussian carp receive the highest external radiation dose, and rudd and surface fish species receive the lowest. It has been proven that the radionuclide 137Cs forms from 62.8 to 98.7 % of the absorbed dose of external irradiation of fishes from the studied water bodies. It is clearly shown that the current levels of the average annual absorbed external dose rate for many of the studied fishes of the lakes exceed the screening dose of 2 μGy/h and in 6 cases out of 22 exceed the safe level of 10 μGy/h recommended by the European Commission project “PROTECT”.
Keywords: Chornobyl Exclusion Zone, Azbuchyn Lake, Vershyna Lake, Hlyboke Lake, Plyutovyshche Lake, fish, absorbed irradiation dose rate, 90Sr, 137Cs.
References:1. I.I. Kryshev, T.G. Sazykina. Assessment of radiation doses to aquatic organism's in the Chernobyl contaminated area. Journal of Environmental Radioactivity 28(1) (1995) 91. https://doi.org/10.1016/0265-931X(94)00043-V
2. D.I. Gudkov et al. Aquatic plants and animals in the Chernobyl exclusion zone: effects of long-term radiation exposure on different levels of biological organization. In: V. Korogodina, C. Mothersill, S. Inge-Vechtomov, C. Seymour (Eds.) Genetics, Evolution and Radiation (Springer, Cham, 2016) p. 287. https://doi.org/10.1007/978-3-319-48838-7_24
3. V.V. Belyaev et al. Radiation dose reconstruction for higher aquatic plants and fish in Glyboke Lake during the early phase of the Chernobyl accident. Journal of Environmental Radioactivity 263 (2023) 107169. https://doi.org/10.1016/j.jenvrad.2023.107169
4. Ye.N. Volkova et al. Radiation dose formation in freshwater fishes at the embryonic stage of their development. Hydrobiological Journal 50(1) (2014) 72. https://doi.org/10.1615/HydrobJ.v50.i1.60
5. A.Ye. Kaglyan et al. Dynamics of specific activity of 90Sr and 137Cs in representatives of ichthyofauna of Chornobyl Exclusion Zone. Nucl. Phys. At. Energy 22 (2021) 62. (Ukr) https://doi.org/10.15407/jnpae2021.01.062
6. D.I. Gudkov et al. Radionuclides in components of aquatic ecosystems of the Chernobyl accident restriction zone. In: 20 Years After the Chernobyl Accident: Past, Present and Future. E.B. Burlakova, V.I. Naidich (Eds.) (New York: Nova Science Publishers, Inc., 2006) p. 265. Google books
7. A.E. Kaglyan et al. Levels of radionuclide contamination of fish of Vershyna Lake in the Chornobyl Exclusion Zone. In.: Energy and Clean Technologies. Proc. of the 22nd Int. Multidisciplinary Scientific GeoConf. (SGEM 2022). O. Trofymchuk, B. Rivza (Eds.). Vol. 22, Iss. 4.2, Vienna, Austria, December 6 - 8, 2022 (Vienna, 2022) p. 473. https://doi.org/10.5593/sgem2022V/4.2/s16.59
8, M.I. Kuzmenko et al. Man-made Radionuclides in Freshwater Ecosystems (Kyiv: Naukova Dumka, 2010) 262 p. (Ukr)
9. D.I. Gudkov et al. Radioecological problems of aquatic ecosystems of the Chernobyl exclusion zone. Biophysics 55 (2010) 332. https://doi.org/10.1134/S0006350910020272
10. O.Ye. Kaglyan et al. Changes in radiation exposure rate of fish of the cooling pond of the Chornobyl NPS and Lake Azbuchyn after water level lowering. Hydrobiological Journal 59(2) (2023) 96. https://doi.org/10.1615/HydrobJ.v59.i2.70
11. R. Bezhenar et al. Modelling of the fate of 137Cs and 90Sr in the Chornobyl Nuclear Power Plant cooling pond before and after the water level drawdown. Water 15(8) (2023) 1504. https://doi.org/10.3390/w15081504
12. I. Mironyuk et all. Investigation of the chemical and radiation stability of titanium dioxide with surface arsenate groups during 90Sr adsorption. Journal of Environmental Radioactivity 251-252 (2022) 106974. https://doi.org/10.1016/j.jenvrad.2022.106974
13. O. Kashparova et al. Clean feed as countermeasure to reduce the 90Sr and 137Cs levels in fish from contaminated lakes. Journal of Environmental Radioactivity 258 (2023) 107091. https://doi.org/10.1016/j.jenvrad.2022.107091
14. O.Ye. Kaglyan et al. Radionuclides in the indigenous fish species of the Chernobyl exclusion zone. Nucl. Phys. At. Energy 13(3) (2012) 306. (Rus) https://jnpae.kinr.kyiv.ua/13.3/Articles_PDF/jnpae-2012-13-0306-Kaglyan.pdf
15. O.L. Zarubin et al. Specific activity 137Cs at fishes of Ukraine. Current state. Nucl. Phys. At. Energy 14(2) (2013) 177. (Rus) https://jnpae.kinr.kyiv.ua/14.2/Articles_PDF/jnpae-2013-14-0177-Zarubin.pdf
16. A.Ye. Kaglyan et al. Radionuclides in fish of the Chernobyl exclusion zone: species-specifity, seasonality, size- and age-dependent features of accumulation. In: Radiation and Application in Various Fields of Research. Proc. of the 3rd Int. Conf. G. Ristić (Ed.), Slovenska Plaza, Budva, Montenegro, June 8 - 12, 2015 (Serbia, Niš: Rad Association, 2015) p. 249. https://www.rad-conference.org/Proceedings-RAD_2015.pdf
17. P. Pavlenko et al. Prussian Blue to reduce radiocaesium accumulation in fish in lakes affected by the Chornobyl accident. Journal of Environmental Radioactivity 270 (2023) 107282. https://doi.org/10.1016/j.jenvrad.2023.107282
18. Practicum on Veterinary Radiobiology. A.D. Belov (Ed.) (Moskva: Agropromizdat, 1988) p. 236. (Rus)
19. P.F. Rokitsky. Biological Statistics (Minsk: Vyshejshaya Shkola, 1973) 320 p. (Rus)
20. A.Ye. Kaglyan et al. Fish of the Chernobyl exclusion zone: modern levels of radionuclide contamination and radiation doses. Hydrobiological Journal 55(5) (2019) 81. https://doi.org/10.1615/HydrobJ.v55.i5.80
21. ERICA Assessment Tool 1.0. The integrated approach seeks to combine exposure/dose/effect assessment with risk characterization and managerial considerations.
22. Yu.V. Movchan. Fish of Ukraine (Kyiv: Zoloti Vorota, 2011) 420 p. (Ukr)
23. Yu.V. Movchan, A.I. Smirnov. Fishes. Carp. In: Fauna of Ukraine. In forty volumes. Vol. 8, iss. 2, part 2 (Kyiv: Naukova Dumka, 1983) p. 354. (Ukr)
24. A.Ya. Shcherbukha. Fishes. Piscivorous. In: Fauna of Ukraine. In forty volumes. Vol. 8, iss. 4 (Kyiv: Naukova Dumka, 1983) p. 384. (Ukr)
25. P.I. Pavlov. Fishes. Pike. In: Fauna of Ukraine. In forty volumes. Vol. 8, iss. 1 (Kyiv: Naukova Dumka, 1983) p. 384. (Ukr)
26. P. Andersson et al. Protection of the environment from ionising radiation in a regulatory context (protect): proposed numerical benchmark values. Journal of Environmental Radioactivity 100 (2009) 1100. https://doi.org/10.1016/j.jenvrad.2009.05.010
27. Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes. Volume II. Effects. Annex E. Effect of ionizing radiation on non-human biota (New York: United Nations, 2011) p. 221. https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2008_Annex-E.pdf