Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 2, pages 125-133.
Section: Radiation Physics.
Received: 02.01.2024; Accepted: 27.05.2024; Published online: 28.06.2024.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2024.02.125

Negative differential resistance and spectral characteristics of original and electron-irradiated (with E = 2 MeV) GaAs1-xPx LEDs

T. I. Mosiuk1,*, R. M. Vernydub1, P. G. Lytovchenko2, M. B. Pinkovska2, D. P. Stratilat2, V. P. Tartachnyk2

1Drahomanov Ukrainian State University, Kyiv, Ukraine
2 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine


*Corresponding author. E-mail address: t.i.mosiuk@npu.edu.ua

Abstract: The electrophysical and radiation characteristics of the original and irradiated electrons with E = 2 MeV GaAsP light emitting diodes were studied. The results of measurements of current-current characteristics in the range of 77 - 300 K are given. In the range of 180 - 77 K, a region of negative differential resistance was detected. The main characteristic parameters of light emitting diodes radiation are determined. The consequences of the effect of radiation defects on the emissivity and quantum yield of the studied structures are discussed.

Keywords: GaAsP, light emitting diodes, negative differential resistance, current-current characteristics.

References:

1. S.A. Garyainov, I.D. Abezgauz. Semiconductor Devices with Negative Resistance (Moskva: Energia, 1970) 320 p. (Rus)

2. I.M. Vikulin, V.I. Stafeev. Physics of Semiconductor Devices (Moskva: Radio i Svyaz, 1990) 296 p.

3. S. Shin, I.M. Kang, K.R. Kim. Negative differential resistance devices with ultra-high peak-to-valley current ratio and its multiple switching characteristics. Journal of Semiconductor Technology and Science 13(6) (2013) 546. http://dx.doi.org/10.5573/JSTS.2013.13.6.546

4. J.J. Guttman et al. Negative differential resistance in polymer tunnel diodes using atomic layer deposited, TiO2 tunneling barriers at various deposition temperatures. Organic Electronics 47 (2017) 228. https://doi.org/10.1016/j.orgel.2017.05.015

5. E.D. Prokhorov, O.V. Botsula. Negative differential conductivity semiconductor diode with resonance-tunnel border. In: International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves. Kharkiv, Ukraine, June 21 - 26, 2010 (Kharkiv, 2010) p. 1. https://doi.org/10.1109/MSMW.2010.5546144

6. D.K. Roy. Tunnelling and Negative Resistance Phenomena in Semiconductors. B.R. Pamplin (Ed.) (New York, Pergamon, 1977) p. 1. Book

7. B.R. Pamplin Negative differential conductivity effects in semiconductors. Contemporary Physics 11 (1970) 1. https://doi.org/10.1080/00107517008204806

8. V.T. Shamirzaev et al. Negative differential resistance in high-power InGaN/GaN laser diodes. Avtometriya 52(5) (2016) 31. (Rus) https://doi.org/10.15372/AUT20160505

9. S.G. Novikov et al. Semiconductor devices with negative resistance on transfer voltampere characteristic. Izvestia Samara Scientific Center of the Russian Academy of Sciences. Fizika i Elektronika 15(6) (2013). (Rus)

10. O.V. Konoreva et al. The influence of acoustic-dislocation interaction on intensity of the bound exciton recombination in initial and irradiated GaAsP LEDs structures. Superlattices and Microstructures 102 (2017) 88. https://doi.org/10.1016/j.spmi.2016.12.026

11. O.V. Konoreva et al. Acoustic-stimulated relaxation of GaAs1-xPx LEDs electroluminescence intensity. Semiconductor Physics Quantum Electronics & Optoelectronics 19(1) (2016) 034. https://doi.org/10.15407/spqeo19.01.034

12. V.P. Veleschuk et al. Acoustic emission and fluctuations of electroluminescence intensity in light-emitting heterostructures. Semiconductor Physics, Quantum Electronics & Optoelectronics 13(1) (2010) 079. https://doi.org/10.15407/spqeo13.01.079

13. À.I. Vlasenko et al. Fluctuations of current, electroluminescence and acoustic emission in light-emitting À3Â5 heterostructures. Semiconductor Physics, Quantum Electronics & Optoelectronics 11(3) (2008) 230. https://doi.org/10.15407/spqeo11.03.230

14. V. Neplokh et al. Red GaPAs/GaP nanowire-based flexible light-emitting diodes. Nanomaterials 11(10) (2021) 2549. https://doi.org/10.3390/nano11102549

15. P.K. Mohseni et al. Structural and optical analysis of GaAsP/GaP core-shell nanowires. J. Appl. Phys. 106 (2009) 124306. https://doi.org/10.1063/1.3269724

16. O. Arif et al. GaAs/GaP superlattice nanowires: growth, vibrational and optical properties. Nanoscale 15 (2023) 1145. https://doi.org/10.1039/D2NR02350D

17. M.A. Baboli. Catalyst-free Heteroepitaxy of III-V Semiconductor Nanowires on Silicon, Graphene, and Molybdenum Disulfide. Thesis for the degree of PhD in Microsystems Engineering. Rochester Institute of Technology (Rochester, New York, 2020) 190 p. https://repository.rit.edu/cgi/viewcontent.cgi?article=11665&context=theses

18. N. Jain, M.K. Hudait. III–V Multijunction Solar Cell Integration with Silicon: Present Status, Challenges and Future Outlook. Energy Harvesting and Systems 1(3-4) (2014) 121. https://doi.org/10.1515/ehs-2014-0012

19. K.C. Dimiduk, C.Q. Ness, J.K. Foley. Electron irradiation of GaAsP LEDs. IEEE Trans. Nucl. Sci. 32(6) (1985) 4010. https://doi.org/10.1109/TNS.1985.4334060

20. A. Ionascut-Nedelcescu et al. Radiation hardness of gallium nitride. IEEE Trans. Nucl. Sci. 49(6) (2002) 2733. https://doi.org/10.1109/TNS.2002.805363

21. A.H. Johnston et al. Characterization of proton damage in light-emitting diodes. IEEE Trans. Nucl. Sci. 47(6) (2000) 2500. https://doi.org/10.1109/23.903799

22. F. Garcia et al. Damage constant and deep-level transient spectroscopy in neutron irradiated GaAsP alloys. J. Electron. Mater. 15 (1986) 133. https://doi.org/10.1007/BF02655326

23. H. Lischka et al. Radiation effects in optoelectronic devices. In: Proceedings SPIE 2425. Optical Fiber Sensing and Systems in Nuclear Environments (30 December 1994). https://doi.org/10.1117/12.198640

24. R.M. Vernydub et al. Spectral characteristics of initial and irradiated GaAsP LEDs. Nucl. Phys. At. Energy 22(2) (2021) 143. https://doi.org/10.15407/jnpae2021.02.143

25. G. Gaydar et al. About bond model of S-type negative differential resistance in GaP LEDs. Superlattices and Microstructures 104 (2017) 316. https://doi.org/10.1016/j.spmi.2017.02.042

26. A. Berg, P. Din. Light-Emitting Diodes. Transl. from English. A.E. Yunovich (Ed.) (Moskva: Mir, 1979) 686 p. (Rus)