Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 1, pages 5-12.
Section: Nuclear Physics.
Received: 08.11.2023; Accepted: 28.02.2024; Published online: 27.03.2024.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2024.01.005

Elastic scattering cross-sections of 16,18O + 120Sn reactions based on the potential of the modified Thomas - Fermi method with consideration of the core

O. I. Davydovska, V. Î. Nesterov*, V. Yu. Denisov

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: v.nest.v@gmail.com

Abstract: Nucleon density distributions and nucleus-nucleus interaction potentials for the reactions 16,18O + 120Sn were obtained within the framework of the modified Thomas - Fermi method. In the calculations, all terms up to the second order in ž in the quasi-classical distribution of kinetic energy were taken into account. Density-dependent Skyrme forces were used as nucleon-nucleon interaction. Using the found potentials, cross-sections of elastic scattering were calculated, which well describe the corresponding experimental data.

Keywords: modified Thomas - Fermi method, nuclear-nuclear potential, elastic scattering cross-section, repulsion core.

References:

1. R. Bass. Nuclear Reactions with Heavy Ions (Berlin, Heidelberg, Springer-Verlag, 1980) 410 p. https://link.springer.com/book/9783540096115

2. G.R. Satchler. Direct Nuclear Reactions (Oxford, Clarendon Press, 1983) 833 p. Google books

3. P. Fröbrich, R. Lipperheide. Theory of Nuclear Reactions (Oxford, Clarendon Press, 1996). https://doi.org/10.1093/oso/9780198537830.001.0001

4. V.Yu. Denisov, V.A. Plujko. Problems of Nuclear Physics and Nuclear Reactions (Kyiv: Publishing and Printing Center "Kyiv University", 2013) 432 p. (Rus) https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/091/45091761.pdf

5. J. Blocki et al. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4

6. W.D. Myers, W.J. Świątecki. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62 (2000) 044610. https://doi.org/10.1103/PhysRevC.62.044610

7. V.Yu. Denisov, V.A. Nesterov. Potential of interaction between nuclei and nucleon-density distribution in nuclei. Phys. At. Nucl. 69 (2006) 1472. https://doi.org/10.1134/S1063778806090067

8. V.Yu. Denisov. Interaction potential between heavy ions. Phys. Lett. B 526 (2002) 315. https://doi.org/10.1016/S0370-2693(01)01513-1

9. H.J. Krappe, J.R. Nix, A.J. Sierk. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20 (1979) 992. https://doi.org/10.1103/PhysRevC.20.992

10. V.Yu. Denisov, W. Nörenberg. Entrance channel potentials in the synthesis of the heaviest nuclei. Eur. Phys. J. A 15 (2002) 375. https://doi.org/10.1140/epja/i2002-10039-3

11. V.Yu. Denisov. Nucleus-nucleus potential with shell correction contribution. Phys. Rev. Ñ 91 (2015) 024603. https://doi.org/10.1103/PhysRevC.91.024603

12. A. Winther. Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594 (1995) 203. https://doi.org/10.1016/0375-9474(95)00374-A

13. V.Yu. Denisov, O.I. Davidovskaya. Elastic scattering of heavy nuclei and nucleus-nucleus potential with repulsive core. Phys. At. Nucl. 73 (2010) 404. https://doi.org/10.1134/S1063778810030026

14. V.Yu. Denisov, O.I. Davidovskaya. Repulsive core potential and elastic heavy-ion collisions. Ukr. J. Phys. 54(7) (2009) 669. http://archive.ujp.bitp.kiev.ua/files/journals/54/7/540704p.pdf

15. K.A. Brueckner, J.R. Buchler, M.M. Kelly. New theoretical approach to nuclear heavy-ion scattering. Phys. Rev. 173 (1968) 944. https://doi.org/10.1103/PhysRev.173.944

16. J. Fleckner, U. Mosel. Antisymmetrization effects in heavy ion potentials. Nucl. Phys. A 277 (1977) 170. https://doi.org/10.1016/0375-9474(77)90268-8

17. O.I. Davidovskaya, V.Yu. Denisov, V.O. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential. Nucl. Phys. At. Energy 11(1) (2010) 25. (Ukr); https://jnpae.kinr.kyiv.ua/11.1/Articles_PDF/jnpae-2010-11-0025-Davidovskaya_part1.pdf

O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 2. The elastic scattering cross sections with and without core. Nucl. Phys. At. Energy 11(1) (2010) 33. (Ukr). https://jnpae.kinr.kyiv.ua/11.1/Articles_PDF/jnpae-2010-11-0033-Davidovskaya_part2.pdf

18. V.Yu. Denisov, O.I. Davidovskaya. Elastic scattering of heavy ions and nucleus-nucleus potential with a repulsive core. Bull. Rus. Ac. Sci.: Phys. 74(4) (2010) 572. https://doi.org/10.3103/S1062873810040325

19. O.I. Davidovskaya, V.Yu. Denisov, V.A. Nesterov. Effective nucleus-nucleus potential with the contribution of the kinetic energy of nucleons, and the cross-sections of elastic scattering and subbarrier fusion. Ukr. J. Phys. 62 (2017) 473. https://doi.org/10.15407/ujpe62.06.0473

20. V.A. Nesterov. Effect of the Pauli exclusion principle and the polarization of nuclei on the potential of their interaction for the example of the 16O + 16O system. Phys. At. Nucl. 76 (2013) 577. https://doi.org/10.1134/S106377881304008X

21. V.O. Nesterov. Influence of the Pauli exclusion principle and the polarization of nuclei on the nuclear part of the interaction potential in the 40Ca + 40Ca system. Nucl. Phys. A 974 (2018) 124. https://doi.org/10.1016/j.nuclphysa.2018.02.006

22. O.I. Davidovskaya, V.Yu. Denisov. Elastic 16O + 16O scattering and nucleus-nucleus potential with a repulsive core. Ukr. J. Phys. 55 (2010) 861. http://archive.ujp.bitp.kiev.ua/files/journals/55/8/550801p.pdf

23. Î.I. Davydovska, V.Yu. Denisov, V.O. Nesterov. Nucleus-nucleus potential, the elastic scattering and subbarrier fusion cross sections for the system 40Ña + 40Ña. Nucl. Phys. At. Energy 19 (2018) 203. (Ukr) https://doi.org/10.15407/jnpae2018.03.203

24. O.I. Davydovska, V.Yu. Denisov, V.A. Nesterov. Comparison of the nucleus-nucleus potential evaluated in the double-folding and energy density approximations and the cross-sections of elastic scattering and fusion of heavy ions. Nucl. Phys. A 989 (2019) 214. https://doi.org/10.1016/j.nuclphysa.2019.06.004

25. V.O. Nesterov, O.I. Davydovska, V.Yu. Denisov. Calculation of the cross-sections of sub-barrier fusion and elastic scattering of heavy ions using the modified Thomas - Fermi approach with the Skyrme force. Nucl. Phys. At. Energy 20 (2019) 349. (Ukr) https://doi.org/10.15407/jnpae2019.04.349

26. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin, Heidelberg, Springer-Verlag, 1980) 718 p. https://link.springer.com/book/9783540212065

27. M. Brack, C. Guet, H.-B. Håkanson. Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5

28. M. Brack, R.K. Bhaduri. Semiclassical Physics (Boston, Addison-Wesley, 1997) 444 p. Google books

29. V.M. Strutinsky, A.G. Magner, V.Yu. Denisov. Density distributions in nuclei. Z. Phys. A 322 (1985) 149. https://doi.org/10.1007/BF01412028

30. J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard. Pairing interaction and self-consistent densities in neutron-rich nuclei. Nucl. Phys. A 693 (2001) 361. https://doi.org/10.1016/S0375-9474(01)00993-9

31. D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

32. J. Bartel et al. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl. Phys. A 386 (1982) 79. https://doi.org/10.1016/0375-9474(82)90403-1

33. S.A. Fayans et al. Nuclear isotope shifts within the local energy-density functional approach. Nucl. Phys. A 676 (2000) 49. https://doi.org/10.1016/S0375-9474(00)00192-5

34. J.W. Negele. The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54 (1982) 913. https://doi.org/10.1103/RevModPhys.54.913

35. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1958-1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6

36. H. Feshbach. The optical model and its justification. Ann. Rev. Nucl. Sci. 8 (1958) 49. https://doi.org/10.1146/annurev.ns.08.120158.000405

37. V.A. Nesterov, O.I. Davydovska, V.Yu. Denisov. Elastic scattering cross-sections obtained on the basis of the potential of the modified Thomas-Fermi method and taking the core into account. Ukr. J. Phys. 67 (2022) 645. https://doi.org/10.15407/ujpe67.9.645

38. O.I. Davydovska, V.A. Nesterov, V.Yu. Denisov. The nucleus-nucleus potential within the extended Thomas-Fermi method and the cross-sections of subbarrier fusion and elastic scattering for the systems 16O + 58,60,62,64Ni. Nucl. Phys. A 1002 (2020) 121994. https://doi.org/10.1016/j.nuclphysa.2020.121994

39. B.C. Robertson et al. Elastic scattering of 16,18O by 116,120Sn at energies near the Coulomb barrier. Phys. Rev. C 4 (1971) 2176. https://doi.org/10.1103/PhysRevC.4.2176

40. H.G. Bohlen et al. The (18O, 16O) reaction on even tin isotopes. Z. Phys. A 273 (1975) 211. https://doi.org/10.1007/BF01435841

41. K.E. Rehm et al. Inelastic scattering of heavy ions. Phys. Rev. C 12 (1975) 1945. https://doi.org/10.1103/PhysRevC.12.1945