Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2008, volume 9, issue 3, pages 39-44.
Section: Nuclear Physics.
Received: 09.06.2008; Published online: 30.12.2008.
PDF Full text (en)
https://doi.org/10.15407/jnpae2008.03.039

Analysis of production of forward-angle fragments in the 22Ne (40 AMeV) + 9Be reaction

G. Kaminski1,2, A. G. Artyukh1, A. Budzanowski2, B. Erdemchimeg1,3, S. A. Klygin1, G. A. Kononenko1, E. Kozik2, T. I. Mikhailova1, Yu. M. Sereda1,4, Yu. G. Teterev1, M. Veselsky5, A. N. Vorontzov1,4

1Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
2Institute of Nuclear Physics PAN, Krakow, Poland
3Mongolian National University, Nuclear Research Center, Ulan-Baator, Mongolia
4Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
5Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract: A mechanisms of production of forward-emitted fragments in the 22Ne (40 ÀMeV) + 9Be reaction are investigated. Inclusive velocity and isotopic distributions of products with 3 ≤ Z ≤ 11 were measured on the fragment separator COMBAS. The contribution of direct processes and dissipative ones is presented. Gaussian fitting functions according to Goldhaber formalism has been used to estimate direct components of fragments velocity distributions. Experimental data have been compared to geometric incomplete fusion model predictions. Incomplete fusion model was the first time applied for light nuclei as in the studied reaction system. Overall agreement of simulations with experiment in description of velocity distributions have been achieved for fragments with atomic number close to the projectile mass and for stable isotopes. Discrepancies for other products are the result of transition from incomplete fusion to direct processes with collisions of clusters in the participant zone.

References:

1. Gregoire C., Tamain B. Intermediate energy heavy ion reactions. Ann. Phys. Fr. 11 (1986) 323. https://doi.org/10.1051/anphys:01986001104032300

2. Fuchs H., Moring K. Heavy-ion break-up processes in the Fermi energy range. Rep. Prog. Phys. 57 (1994) 231. https://doi.org/10.1088/0034-4885/57/3/001

3. Dayras R., Pagano A., Barrette J. et al. Peripheral interactions for 44 MeV/u 49Ar on 27Al and natTi Targets. Nucl. Phys. A 460 (1986) 299. https://doi.org/10.1016/0375-9474(86)90128-4

4. Faure-Ramstein B., Auger F., Wieleczko J. P. et al. Nucl. Phys. A 586 (1995) 533. https://doi.org/10.1016/0375-9474(94)00796-P

5. Hanold K. A., Bazin D., Mohar M. F. et al. Heavy residues from very mass-asymmetric heavy-ion reactions. Phys. Rev. C 52 (1995) 1462. https://doi.org/10.1103/PhysRevC.52.1462

6. Notani M., Sakurai H., Aoi N. et al. Projectile fragmentation reactions and production of nuclei near the neutron drip line. Phys. Rev. C 76 (2007) 044605. https://doi.org/10.1103/PhysRevC.76.044605

7. Souliotis G. A., Morrissey D. J., Orr N. A. et al. 0° measurements of momentum distributions of projectile-like fragments. Phys. Rev. C 46 (1992) 1383. https://doi.org/10.1103/PhysRevC.46.1383

8. Pfaff R., Morrissey D. J., Fauerbach M. et al. Projectilelike fragment momentum distributions from 86Kr + Al at 70 MeV/nucleon. Phys. Rev. C 51 (1995) 1348. https://doi.org/10.1103/PhysRevC.51.1348

9. Artukh A. G., Budzanowski A., Kamiński G. et al. QMD approach in description of the 18O + 9Be and 18O + 181Ta reactions at Eproj = 35 AMeV. Acta Phys. Pol. B 37 (2006) 1875.

10. Mikhailova T., Colonna M., Di Toro M. et al. Investigations of dissipative collisions with transport models. Rom. Journ. Phys. 32 (2007) 875.

11. Goldhaber A. S. Statistical model of fragmentation processes. Phys. Lett. B 53 (1974) 306. https://doi.org/10.1016/0370-2693(74)90388-8

12. Veselsky M. Production mechanism of hot nuclei in violent collisions in the Fermi energy domain. Nucl. Phys. A 705 (2002) 193. https://doi.org/10.1016/S0375-9474(02)00596-1

13. Artukh A. G., Gridniev G. F., Grushezki M. et al. Wide aperture separator COMBAS realized on the strong focusing principle. Nucl. Instr. Meth. A 426 (1999) 605. https://doi.org/10.1016/S0168-9002(98)01383-7

14. Tassan-Got L., Stefan C. Nucl. Phys. A 524 (1991) 121. https://doi.org/10.1016/0375-9474(91)90019-3

15. Von Oertzen W., Freer M., Kanada-En'yo Y. Nuclear clusters and nuclear molecules. Phys. Rep. 432 (2006) 43. https://doi.org/10.1016/j.physrep.2006.07.001

16. Veselsky M., Souliotis G. A., Chubarian G. et al. Heavy residues with A < 90 from the asymmetric reaction of 20 AMeV 124Sn + 27Al as a sensitive probe of the onset of multifragmentation. Nucl. Phys. A 724 (2003) 431. https://doi.org/10.1016/S0375-9474(03)01571-9

17. Veselsky M., Souliotis G. A. Production of cold fragments in nucleus-nucleus collisions in the Fermi-energy domain. Nucl. Phys. A 781 (2007) 521. https://doi.org/10.1016/j.nuclphysa.2006.11.019

18. Bondorf J. P., Botvina A. S., Iljinov A. S. et al. Statistical multifragmentation of nuclei. Phys. Rep. 257 (1995) 133. https://doi.org/10.1016/0370-1573(94)00097-M

19. Botvina A. S., Iljinov A. S., Mishustin I. N. et al. Statistical simulation of the break-up of highly excited nuclei. Nucl. Phys. A 475 (1987) 663. https://doi.org/10.1016/0375-9474(87)90232-6

20. Lahmer W., Oertzen von W., Miczaika A. et al. Transfer and fragmentation reactions of 14N at 60 MeV/u. Z. Phys. A 337 (1990) 425. https://doi.org/10.1007/BF01294980