![]() |
ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Mean-field approximation for finite nuclei and nuclear matter
S. Shlomo1
1Cyclotron Institute, Texas A&M University, College Station, USA
Abstract: We discuss a realistic case of fitting the values of the Skyrme parameters to an extensive set of experimental data on the ground-state properties of many nuclei ranging from normal to exotic ones. We include, in particular, the radii for valence neutron orbits and the breathing-mode energies for several nuclei. We further constrain the values of the Skyrme parameters by requiring positive values for the slope of the symmetry energy S, the enhancement factor, κ associated with the isovector giant dipole resonance, and the Landau parameter G'0. We also present results of Hartree-Fock based random phase approximation for the excitation strength function of the breathing mode and discuss the current status of the nuclear matter incompressibility coefficient.
References:1. Kohn W. Rev. Mod. Phys. 71 (1999) 1253. https://doi.org/10.1103/RevModPhys.71.1253
2. Skyrme T. H. R. Phil. Mag. 1 (1956) 1043. https://doi.org/10.1080/14786435608238186
3. Skyrme T. H. R. Nucl. Phys. 9 (1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6
4. Vautherin D., Brink D. M. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626
5. Chabanat E., Bonche P., Haensel P. et al. Nucl. Phys. A 627 (1997) 710. https://doi.org/10.1016/S0375-9474(97)00596-4
6. Chabanat E., Bonche P., Haensel P. et al. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8
7. Bender M., Heenen P. H., Reinhard P. -G. Rev. Mod. Phys. 75 (2003) 121. https://doi.org/10.1103/RevModPhys.75.121
8. Agrawal B. K., Shlomo S., Kim Au V. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310
9. Shlomo S. Rep. Prog. Phys. 41 (1978) 957. https://doi.org/10.1088/0034-4885/41/7/001
10. Shlomo S., Love W. G. Physica Scripta 26 (1982) 280. https://doi.org/10.1088/0031-8949/26/4/005
11. Nolen J. A., Schiffer J. P. Annu. Rev. Nucl. Sci. 19 (1969) 471. https://doi.org/10.1146/annurev.ns.19.120169.002351
12. Migdal B. Theory of Finite Fermi Systems, and Application to Atomic Nuclei (New York: Interscience Pub., 1967).
13. Margueron J., Navarro J., Giai N. V. Phys. Rev. C 66 (2002) 014303. https://doi.org/10.1103/PhysRevC.66.014303
14. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes in Fortran (Cambridge: Cambridge University Press, 1992).
15. Bohr A., Mottelson B. R. Nuclear Structure. Vol. I (New York: Benjamin, 1969).
16. Shlomo S., Bertsch G. F. Nucl. Phys. A 243 (1975) 507. https://doi.org/10.1016/0375-9474(75)90292-4
17. Agrawal B. K., Shlomo S., Kim Au V. Phys. Rev. C 70 (2004) 057302. https://doi.org/10.1103/PhysRevC.70.057302
18. Giai N. V., Bortignon P. F., Colo G. et al. Nucl. Phys. A 687 (2001) 44. https://doi.org/10.1016/S0375-9474(01)00599-1
19. Giai N. V., Sagawa H. Phys. Lett. B 106 (1981) 379. https://doi.org/10.1016/0370-2693(81)90646-8
20. Agrawal B. K., Shlomo S., Kim Au V. Phys. Rev. C 68 (2003) 031304(R). https://doi.org/10.1103/PhysRevC.68.031304
21. Piekarewicz J. Phys. Rev. C 66 (2002) 034305. https://doi.org/10.1103/PhysRevC.66.034305
22. Stone J. R., Miller J. C., Koncewicz R. et al. Phys. Rev. C 68 (2003) 034324. https://doi.org/10.1103/PhysRevC.68.034324
23. Shlomo S., Kolomietz V. M, Colo G. Eur. Phys. J. A 30 (2006) 23. https://doi.org/10.1140/epja/i2006-10100-3
24. Shlomo S. Phys. Lett. B 209 (1988) 23. https://doi.org/10.1016/0370-2693(88)91822-9
25. Trache L., Kolomiets A., Shlomo S. et al. Phys. Rev. C 54 (1996) 2361. https://doi.org/10.1103/PhysRevC.54.2361
26. Esbensen H., Bertsch G. F. Phys. Rev. C 28 (1983) 355. https://doi.org/10.1103/PhysRevC.28.355
27. Bender M., Bertsch G. F., Heenen P. -H. Phys. Rev. C 69 (2004) 034340. https://doi.org/10.1103/PhysRevC.69.034340
28. Youngbood D. H., Lui Y. W., Clark H. L. et al. Phys. Rev. C 69 (2004) 034315. https://doi.org/10.1103/PhysRevC.69.034315