УДК 539.172.17

# МЕХАНІЗМИ ПРУЖНОГО РОЗСІЯННЯ ЯДЕР <sup>7</sup>Li, <sup>7</sup>Be +<sup>9</sup>Be ТА ОПТИЧНІ ПОТЕНЦІАЛИ ЇХ ВЗАЄМОДІЇ

### А. Т. Рудчик, В. О. Романишин, В. М. Кир'янчук, О. А. Понкратенко, В. В. Улещенко

Інститут ядерних досліджень НАН України, Київ

Проаналізовано відомі з літератури експериментальні дані пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Be та <sup>7</sup>Be + <sup>9</sup>Be при енергіях  $E_{na6}$ (<sup>7</sup>Li) = 15,75; 24; 30 і 34 MeB та  $E_{na6}$ (<sup>7</sup>Be) = 17, 19 і 21 MeB за оптичною моделлю та методом зв'язаних каналів реакцій з урахуванням ролі процесів реорієнтації ядер <sup>7</sup>Li, <sup>7</sup>Be і <sup>9</sup>Be та реакцій одно- й двоступінчастих передач у цьому розсіянні. Отримано набори параметрів оптичних потенціалів взаємодії ядер <sup>7</sup>Li + <sup>9</sup>Be і <sup>7</sup>Be + <sup>9</sup>Be, їх енергетичну залежність та встановлено механізми пружного розсіяння даних ядер. Досліджено ізобаричні та ізотопічні відмінності параметрів потенціалів взаємодії ядер <sup>7</sup>Li + <sup>9</sup>Be і <sup>8</sup>Be + <sup>9</sup>Be.

#### Вступ

Відомі експериментальні дані пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Be при енергіях  $E_{\text{лаб}}(^{7}\text{Li}) =$ = 15,75; 24 i 30 MeB [1], 24 MeB [2] i 34 MeB [3] та ядер <sup>7</sup>Be + <sup>9</sup>Be при енергіях  $E_{\text{лаб.}}$  (<sup>7</sup>Be) = 17, 19 і 21 МеВ [1] уможливлюють отримання параметрів <sup>7</sup>Li + <sup>9</sup>Be- і <sup>7</sup>Be + <sup>9</sup>Be-потенціалів, їх енергетичної залежності та дослідження можливих їх ізобаричних відмінностей. Раніше, у цитованих роботах, ці дані аналізувались лише за оптичною моделлю без урахування можливих внесків у перерізи пружного розсіяння процесів реорієнтації цих ядер та реакцій передач. Ці процеси можуть бути важливими для розсіяння іонів <sup>7</sup>Li і <sup>7</sup>Be на середні та великі кути. І хоча експериментальні дані на цих кутах поки що відсутні, у даній статті ми наводимо наші розрахунки перерізів пружного розсіяння ядер  $^{7}Li + {}^{9}Be i {}^{7}Be + {}^{9}Be$  за методом зв'язаних каналів реакцій (МЗКР) у повному кутовому діапазоні як прогноз для майбутніх експериментів, зважаючи на важливість експериментальних даних на великих кутах для зменшення невизначеності параметрів оптичних ядроядерних потенціалів при їх отриманні з аналізу експериментальних даних.

Наш інтерес до параметрів оптичних <sup>7</sup>Li +  ${}^{9}$ Be- і <sup>7</sup>Be +  ${}^{9}$ Be-потенціалів, визначених на основі даних безпосередніх екпериментів, обумовлений також нашими дослідженнями <sup>8</sup>Be +  ${}^{9}$ Be- і <sup>7</sup>Be +  ${}^{10}$ Be-потенціалів на основі експериментальних даних реакцій <sup>7</sup>Li( ${}^{10}$ B,  ${}^{9}$ Be)<sup>8</sup>Be [4] і <sup>7</sup>Li( ${}^{10}$ B,  ${}^{10}$ Be)<sup>7</sup>Be [5] при енергії  $E_{na6.}({}^{10}$ B) = 51 MeB. Порівняльний аналіз значень параметрів усіх цих потенціалів важливий для вивчення відмінностей структури даних взаємодіючих ядер, від якої залежать параметри ядро-ядерних потенціалів.

#### Аналіз експериментальних даних

Експериментальні дані пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Be та <sup>7</sup>Be + <sup>9</sup>Be при енергіях  $E_{\text{лаб}}(^{7}\text{Li}) =$ 

= 15,75; 24 і 30 MeB [1], 24 MeB [2] і 34 MeB [3] та  $E_{\text{лаб}}(^7\text{Be})$  = 17, 19 і 21 MeB [1] проаналізовано за оптичною моделлю (ОМ) та МЗКР з використанням ядерних потенціалів типу Вудса – Саксона

$$U(r) = V_0 \left[ 1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_S \left[ 1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

та кулонівських потенціалів рівномірно зарядженої кулі

$$V_{C}(r) = \begin{cases} Z_{P} Z_{T} e^{2} (3 - r^{2} / R_{C}^{2}) / 2R_{C}, & r \le R_{C}, \\ Z_{P} Z_{T} e^{2} / r, & r > R_{C}, \end{cases}$$
(2)

де  $R_i = r_i (A_P^{1/3} + A_T^{1/3})$  (*i* = *V*, *W*, *C*); *A*<sub>P</sub>, *A*<sub>T</sub> i *Z*<sub>P</sub>, *Z*<sub>T</sub> – маси і заряди іонів та ядер мішеней; *e* - заряд електрона.

В аналізі даних за ОМ підгонка параметрів  $X_i = \{V_{0}, r_{V_i} a_{V_i} W_{S_i} r_{W_i} a_{W}\}$  оптичного потенціалу (1) проводилась до експериментальних даних за  $\chi^2$ -критерієм, незалежно для кожної енергії, з урахуванням обмеження на значення параметра  $R_V$ 

$$R_{comp} \approx 1,25 \cdot (A_P + A_T)^{1/3} \le R_V = r_V (A_P^{1/3} + A_T^{1/3})$$
(3)

для врахування принципу Паулі при зіткненні ядер на малих відстанях. У цій нерівності  $R_{comp}$  – радіус компаунд-ядра. В усіх ОМ- і МЗКР-розрахунках для кулонівської взаємодії використовувався параметр  $r_C = 1,25$  фм.

Значення параметрів  $X_i$ , отримані в ОМ-підгонках, використовувались як початкові для розрахунків за МЗКР. У цих розрахунках уточнювались усі  $X_i$ -параметри, проте найбільших змін зазнавали значення параметрів  $W_S$  і  $r_W$ .

У розрахунках за МЗКР зв'язувались канали пружного й непружного розсіяння ядер для низькоенергетичних збуджень ядер аж до енергії ~9 MeB, процеси реорієнтації ядер, а також найбільш важливі реакції передач, діаграми яких представлено на рис. 1 і 2. При цьому вважалось, що ядра деформовані

$$R = R_0 + \sum_{\lambda \neq 0} \delta_{\lambda} Y_{\lambda}^0(\theta), \qquad (4)$$

а їх збуджені стани мають колективну (ротаційну) природу. Переходи в такі стани обчислювались з використанням форм-фактора



Рис. 1. Діаграми реакцій передач для <sup>7</sup>Li + <sup>9</sup>Верозсіяння.

Матричні елементи  $T_{J^{\pi};J^{\pi}}^{\lambda=2}$  реорієнтації ядер <sup>7</sup>Li, <sup>7</sup>Be і <sup>9</sup>Be обчислювались як квадрупольні ротаційні переходи під дією оператора  $V_{\lambda=2}(r)$  з передачею орбітального моменту  $L = \lambda = 2$  [6]:

$$T_{J^{\pi};J^{\pi}}^{\lambda=2} = \langle E, J^{\pi} | V_{\lambda=2}(r) Y_2^0 | E, J^{\pi} \rangle.$$
(6)

Розрахунки перерізів реакцій здійснювались із спектроскопічними амплітудами  $S_x$  нуклонів і кластерів x у системах A = C + x

$$S_{x} = \left(\frac{A}{x}\right)^{1/2} < \Psi_{A} \mid \Psi_{C} \Psi_{x}; \varphi_{xC} >, \qquad (7)$$

$$V_{\lambda}(r) = -\frac{\delta_{\lambda}}{\sqrt{4\pi}} \frac{dU(r)}{dr},$$
(5)

де  $\delta_{\lambda}$  – довжина деформації ядер  $\lambda$ -мультипольності. Розрахунки перерізів непружного розсіяння ядер та процесів реорієнтації проводились з такими параметрами деформації ядер:  $\delta_2 = 1,6 \text{ фм}; \delta_4 = 1,0 \text{ фм для}^7 \text{Li}$  [19] і <sup>7</sup>Be та  $\delta_1 = 2,0 \text{ фм}, \delta_2 = 1,8 \text{ фм}; \delta_3 = 1,0 \text{ фм і } \delta_4 = 0,4 \text{ фм для}^9 \text{Be}$  [20].



Рис. 2. Діаграми реакцій передач для <sup>7</sup>Be + <sup>9</sup>Beрозсіяння.

отриманими в рамках трансляційно-інваріантної моделі оболонок (ТІМО) [7] за допомогою програми DESNA [8, 9] із використанням таблиць хвильових функцій роботи [10]. У виразі (7)  $\Psi_A$ ,  $\Psi_C$ ,  $\Psi_x$  – хвильові функції внутрішніх станів ядер A, C, x відповідно, а  $\varphi_{xC}$  – хвильова функція руху кластера x відносно серцевини (кору) C ядра A. Використаі у МЗКР-розрахунках спектроскопічні амплітуди  $S_x$  містяться в табл. 1.

| Таблиця 1. | Спектроскопічні амплітуди | S <sub>x</sub> нуклонів і кластерів x | у системах $A = C + x$ |
|------------|---------------------------|---------------------------------------|------------------------|
|            |                           |                                       |                        |

| A               | С               | x | $nL_J$     | $S_x$                     | A                 | С               | x  | $nL_J$     | $S_x$                     |
|-----------------|-----------------|---|------------|---------------------------|-------------------|-----------------|----|------------|---------------------------|
| <sup>7</sup> Li | <sup>6</sup> He | р | $1P_{3/2}$ | 0,805                     | <sup>9</sup> Be   | <sup>7</sup> Li | d  | $2S_1$     | $-0,226^{a}$              |
| <sup>7</sup> Li | <sup>6</sup> Li | n | $1P_{1/2}$ | -0,657                    |                   |                 |    | $1D_1$     | 0,111 <sup><i>a</i></sup> |
|                 |                 |   | $1P_{3/2}$ | $-0,735^{a}$              |                   |                 |    | $1D_3$     | $-0,624^{a}$              |
| <sup>8</sup> Li | <sup>7</sup> Li | n | $1P_{1/2}$ | 0,478                     | <sup>9</sup> Be   | <sup>8</sup> Li | р  | $1P_{1/2}$ | $-0,375^{a}$              |
| <sup>7</sup> Be | <sup>6</sup> Li | р | $1P_{1/2}$ | -0,657                    | <sup>9</sup> Be   | <sup>7</sup> Be | 2n | $2S_0$     | 0,247                     |
|                 |                 |   | $1P_{3/2}$ | $-0,735^{a}$              |                   |                 |    | $1D_2$     | 0,430                     |
| <sup>7</sup> Be | <sup>6</sup> Be | n | $1P_{3/2}$ | -0,805                    | <sup>9</sup> Be   | <sup>8</sup> Be | n  | $1P_{3/2}$ | 0,866                     |
| <sup>8</sup> Be | <sup>7</sup> Li | р | $1P_{3/2}$ | 1,234 <sup><i>a</i></sup> | <sup>10</sup> Be  | <sup>9</sup> Be | n  | $1P_{3/2}$ | $1,406^{a}$               |
| <sup>8</sup> Be | <sup>7</sup> Be | n | $1P_{3/2}$ | $-1,234^{a}$              | $^{10}\mathbf{B}$ | <sup>9</sup> Be | р  | $1P_{3/2}$ | 1,185                     |
| <sup>8</sup> B  | <sup>7</sup> Be | р | $1P_{1/2}$ | 0,478                     |                   |                 |    |            |                           |

 ${}^{a}S_{\text{FRESCO}} = (-1)^{J_{C}+J-J_{A}}S_{x} = -S_{x}$ 

Хвильові функції зв'язаних станів нуклонів і кластерів обчислювались стандартним способом шляхом підгонки параметра V дійсного потенціалу Вудса - Саксона для отримання відповідних значень енергії зв'язку нуклона чи кластера x у системах A = C + x. При цьому для даного потенціалу використовувались значення параметрів  $a_V = 0,65$  фм та  $r_V = 1,25A^{1/3} / (C^{1/3} + x^{1/3})$  фм. ОМ- і МЗКР-розрахунки здійснювались за

допомогою програм SPI-GENOA [11] і FRESCO [12] відповідно.

Досягнуті в результаті підгонки параметрів <sup>7</sup>Li + <sup>9</sup>Be- і <sup>7</sup>Be + <sup>9</sup>Be-потенцілів успіхи в описі експериментальних даних пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Be і <sup>7</sup>Be + <sup>9</sup>Be при різних енергіях демонструються на рис. 3 - 6, а відповідні набори  $X_i$ -параметрів представлено в табл. 2, а також показано на рис. 7 точками.

| Система                             | <i>Е</i> <sub>лаб</sub> , | <i>Е</i> <sub>с.ц.м.</sub> , | V <sub>0</sub> , | $r_V$ , | $a_V$ , | $W_{S}$ , | <i>r</i> <sub><i>W</i></sub> , | $a_W$ , |
|-------------------------------------|---------------------------|------------------------------|------------------|---------|---------|-----------|--------------------------------|---------|
| ядер                                | MeB                       | MeB                          | MeB              | фм      | фм      | MeB       | фм                             | фм      |
| $^{7}\text{Li} + ^{9}\text{Be}$     | 15,75                     | 8,86                         | 170,0            | 0,900   | 0,710   | 9,4       | 1,410                          | 0,710   |
|                                     | 24,0                      | 13,50                        | 195,4            | 0,851   | 0,760   | 13,0      | 1,320                          | 0,760   |
|                                     | 30,0                      | 16,88                        | 178,0            | 0,789   | 0,780   | 12,8      | 1,250                          | 0,780   |
|                                     | 34,0                      | 19,13                        | 170,3            | 0,789   | 0,780   | 15,8      | 1,310                          | 0,780   |
| $^{7}\mathrm{Be} + ^{9}\mathrm{Be}$ | 17,0                      | 9,56                         | 174,6            | 0,901   | 0,732   | 10,1      | 1,391                          | 0,732   |
|                                     | 19,0                      | 10,69                        | 184,1            | 0,878   | 0,741   | 11,1      | 1,367                          | 0,741   |
|                                     | 21,0                      | 11,81                        | 189,4            | 0,856   | 0,750   | 12,1      | 1,344                          | 0,750   |

Таблиця 2. Параметри <sup>7</sup>Li + <sup>9</sup>Be- i <sup>7</sup>Be + <sup>9</sup>Be-потенціалів

На рис. 3 показано експериментальні дані пружного розсіяння ядер  $^{7}Li + {}^{9}Be$  при енергії  $E_{\text{паб}}(^{7}\text{Li}) = 34 \text{ MeB} [3]$  та відповідні розрахунки за ОМ (крива <OM>) і МЗКР для передачі дейтрона (крива <d>), послідовних обмінів нейтронами й протонами (криві <nn> і <pp> відповідно), n + p і p + n-передач (крива <np>) та реорієнтації ядер <sup>7</sup>Li і <sup>9</sup>Ве (крива <reor> показує когерентну суму перерізів реорієнтацій обох ядер). Видно, що на малих кутах основну роль відіграє потенціальне розсіяння, на великих кутах – передача дейтрона, а на середніх кутах потенціальне розсіяння, передача дейтрона та процеси реорієнтації ядер <sup>7</sup>Li і <sup>9</sup>Be. Двоступінчасті реакції передач нуклонів р + р, n + n та n + p не відіграють суттєвої ролі у пружному розсіянні ядер  $^{7}Li + {}^{9}Be$  при всіх досліджуваних енергіях іонів <sup>7</sup>Li. Як видно з рис. 3, когерентна сума МЗКР-перерізів усіх вищезгаданих процесів (крива  $\Sigma$ ) задовільно описує експериментальні дані пружного розсіяння ядер <sup>7</sup>Li і <sup>9</sup>Ве при енергії  $E_{\text{лаб.}}(^7\text{Li}) = 34 \text{ MeB}$  [3]. Для остаточного висновку про механізми пружного розсіяння ядер <sup>7</sup>Li i <sup>9</sup>Be та надійного визначення параметрів оптичного потенціалу взаємодії цих ядер необхідні ще експериментальні дані хоча б в області великих кутів. Ці дані відсутні в усіх відомих публікаціях з даного розсіяння.

На рис. 4 представлено експериментальні диференціальні перерізи пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Ве при енергіях  $E_{\text{лаб.}}(^{7}\text{Li}) = 15,75$ ; 24 і 30 MeB [1] і 24 MeB [2] як відношення до кулонівського розсіяння разом з відповідними ОМ- та МЗКР-перерізами для основних механізмів. Як і в попередньому випадку, на малих кутах домінує потенціальне розсіяння, а на великих кутах – передача дейтрона та реорієнтація ядер <sup>7</sup>Li і <sup>9</sup>Ве. В області середніх кутів важливі всі три процеси. Когерентні суми перерізів усіх трьох механізмів (криві  $\Sigma$ ) задовільно описують експериментальні дані при всіх досліджуваних енергіях. МЗКР-розрахунки прогнозують зростання перерізів пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Ве відносно кулонівського розсіяння на великих кутах при всіх енергіях.

На рис. 5 представлено експериментальні дані пружного розсіяння ядер  $^{7}$ Be +  $^{9}$ Be при енергії  $E_{\text{лаб.}}(^{7}\text{Be}) = 21 \text{ MeB } [1]$  та відповідні розрахунки за ОМ (крива <OM>) і МЗКР для передачі динейтрона (крива <2n>), послідовних обмінів нейтронами й протонами (криві <nn> і <pp> відповідно) та реорієнтації ядер <sup>7</sup>Ве і <sup>9</sup>Ве (крива <reor> показує когерентну суму перерізів реорієнтацій обох ядер). Видно, що основну роль у даному пружному розсіянні відіграють потенціальне розсіяння та процеси реорієнтації ядер. Реакції передач динейтрона та послідовних передач нуклонів мають другорядне значення. Така ситуація спостерігається й для енергій  $E_{\text{лаб.}}(^7\text{Be}) = 17$  та 19 МеВ [1], як видно на рис. 6, де показано відношення диференціальних перерізів пружного розсіяння ядер  $^{7}Be + {}^{9}Be$  до кулонівського розсіяння при цих енергіях. Когерентні суми



Рис. 3. Диференціальні перерізи пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Ве при енергії  $E_{\text{лаб.}}(^{7}\text{Li}) = 34 \text{ MeB [3]}$ . Криві – розрахунки за ОМ та МЗКР.



 $\sigma/\sigma_{\rm R}$ 10 <sup>9</sup>Be + <sup>7</sup>Li E<sub>лаб.</sub>(<sup>7</sup>Li) = 15,75 MeB 1 10 (reor -2 10  $\langle d \rangle$ (OM)  $\mathrm{E}_{\pi a \delta.}(^{7}\mathrm{Li})$ = 24 MeB1 Σ 10 10  $E_{\pi a \delta}$  (<sup>7</sup>Li) = 30 MeB 1 -1 10 .2 10 (OM) ď ·З 10 ............ 0 30 60 90 120 150 180 Θ°<sub>с.ц.м.</sub>

Рис. 4. Те ж, що на рис. 3, але при енергіях  $E_{\text{лаб.}}(^{7}\text{Li}) = 15,75$ ; 24 і 30 МеВ (точки) [1] і 24 МеВ (трикутники) [2] відносно кулонівського розсіяння.



Рис. 5. Диференціальні перерізи пружного розсіяння ядер  ${}^{7}\text{Be} + {}^{9}\text{Be}$  при енергії  $E_{\text{лаб.}}({}^{7}\text{Be}) = 21 \text{ MeB}$  [1]. Криві – розрахунки за ОМ та МЗКР.

Рис. 6. Те ж саме, що на рис. 5, але для енергій  $E_{\text{лаб.}}(^{7}\text{Be}) = 17, 19 \text{ i } 21 \text{ MeB} [1]$  як відношення до кулонівського розсіяння.

МЗКР-перерізів усіх механізмів даного розсіяння (криві  $\Sigma$ ) задовільно описують наявні експериментальні дані та прогнозують зростання перерізів <sup>7</sup>Ве + <sup>9</sup>Ве-розсіяння відносно кулонівського розсіяння на великих кутах, де відсутні експериментальні дані. Отримані в результаті підгонок параметри  $X_i = \{V_{0}, r_{V_i} a_{V_i} W_{S_i} r_{W_i} a_{W}\}^{-7} Li + {}^9Be-i {}^7Be + {}^9Be-$ потенціалів містяться в табл. 2 і показані на рис. 7 залежно від енергії  $E_{c.u.M}$  темними та світлими точками відповідно. Енергетична залежність цих параметрів наближувалась параметризованими функціями [13]

$$X_{i}(E) = \begin{cases} X_{i}^{\max} - (X_{i}^{\max} - X_{i}^{\min}) \cdot g(E, E_{X_{i}}, \Delta E_{X_{i}}) & \text{для} & X_{i} = V_{0}, W_{S}, a_{V}, a_{W}, \\ X_{i}^{\min} + (X_{i}^{\max} - X_{i}^{\min}) \cdot g(E, E_{X_{i}}, \Delta E_{X_{i}}) & \text{для} & X_{i} = r_{V}, r_{W}, \end{cases}$$
(8)

дe

$$g(E, E_{X_i}, \Delta E_{X_i}) = \left[1 + \exp\left(\frac{E - E_{X_i}}{\Delta E_{X_i}}\right)\right]^{-1}, \quad (9)$$

а  $Y_i = \{X_i^{\min}, X_i^{\max}, E_{X_i}, \Delta E_{X_i}\}$  - параметри енергетичної залежності оптичних потенцілів. Підгонка цих параметрів до значень параметрів оптичних потенціалів здійснювалась за методом найменших квадратів ( $\chi^2$ -методом).



Рис. 7. Енергетичні залежності параметрів  $^{7}$ Li( $^{7}$ Be) +  $^{9}$ Be-потенціалів (точки та суцільні криві) у порівнянні з відповідними залежностями параметрів  $^{8}$ Be +  $^{9}$ Be-потенціалу (криві  $<^{8}$ Be>).

При цьому враховувалась дисперсійна залежність між дійсною та уявною частинами оптичного потенціалу [14]

$$V(r, E) = V_0(E) + \Delta V(r, E) =$$
  
=  $V_0(E) + \frac{P}{\pi} \int_0^\infty \frac{W(r, E')}{E' - E} dE'$  (10)

(Р вказує на головне значення інтеграла). При r = 0 ці співвідношення виражають зв'язок між параметрами глибин дійсної та уявної частин потенціалу розсіяння.

Отримані в результаті підгонки значення параметрів  $Y_i = \{X_i^{\min}, X_i^{\max}, E_{X_i}, \Delta_{X_i}\}$  енергетичної залежності <sup>7</sup>Li(<sup>7</sup>Be) + <sup>9</sup>Be-потенціалів наведено в табл. 3, а графіки відповідних функцій для параметрів <sup>7</sup>Li(<sup>7</sup>Be) + <sup>9</sup>Be-потенціалу – на рис. 7 (суцільні криві). Видно, що параметри <sup>7</sup>Be + <sup>9</sup>Be-потенціалу (світлі точки на даному рисунку) добре узгоджуються з енергетичною залежністю параметрів <sup>7</sup>Li + <sup>9</sup>Be-потенціалу.

Для порівняння на рис. 7 показано також енергетичні залежності параметрів <sup>8</sup>Be + <sup>9</sup>Be-потенціалу [4]. Видно, що ці залежності значно відрізняются від відповідних залежностей <sup>7</sup>Li(<sup>7</sup>Be) + <sup>9</sup>Beпотенціалу. Ці два потенціали порівнюються на рис. 8. Видно, що уявні частини оптичних потенціалів взаємодії ядер <sup>8</sup>Be + <sup>9</sup>Be та <sup>7</sup>Li(<sup>7</sup>Be) + <sup>9</sup>Be значно відрізняються в периферійній області. Можна вважати, що це обумовлено різною структурою ядер <sup>7</sup>Li(<sup>7</sup>Be) і <sup>8</sup>Be, від якої дуже залежить уявна частина оптичного потенціалу.

Про залежність дійсних частин  ${}^{7}Li({}^{7}Be) + {}^{9}Be-$ і  ${}^{8}Be + {}^{9}Be-$ потенціалів від структури взаємодіючих ядер можна судити з порівняння фолдінгпотенціалів взаємодії цих пар ядер. Таке порівняння зроблено на рис. 9, де представлено відповідні фолдінг-потенціали, обчислені за моделлю подвійної згортки (double folding) згідно з формулою

$$V(\vec{R}) = \int \rho_P(\vec{r}_P) \rho_T(\vec{r}_T) \upsilon(\vec{R} + \vec{r}_T - \vec{r}_P) d^3 r_P d^3 r_T , \quad (11)$$

де  $\rho_P(\vec{r}_P)$ ,  $\rho_T(\vec{r}_T)$  - розподіли густин нуклонів у налітаючому іоні *P* та ядрі мішені *T* відповідно;  $v(\vec{R} + \vec{r}_T - \vec{r}_P)$  - нуклон-нуклонний потенціал. У розрахунках використовувався модифікований трикомпонентний потенціал Юкави (M3Y – modified three-component Yukava potential) нуклон-нуклонної взаємодії

$$\psi(r) = 7999 \frac{e^{-4r}}{4r} - 2134 \frac{e^{2.5r}}{2.5r} - 276 (1 - 0.005 \frac{E}{A}) \delta(r),$$
(12)

де E – енергія налітаючого іона; A – маса іона;  $\delta(r)$  – дельта-функція.

Таблиця 3. Параметри енергетичної залежності потенціалів взаємодії ядер <sup>7</sup>Li + <sup>9</sup>Be та <sup>7</sup>Be + <sup>9</sup>Be

|                     | $X_i$   |           |                  |                        |         |         |  |  |  |
|---------------------|---------|-----------|------------------|------------------------|---------|---------|--|--|--|
| $Y_i$               | $V_0$ , | $W_{S}$ , | r <sub>V</sub> , | <i>r<sub>W</sub></i> , | $a_V$ , | $a_W$ , |  |  |  |
|                     | MeB     | MeB       | фм               | фм                     | фм      | фм      |  |  |  |
| $X_i^{\min}$        | 100,0   | 5,0       | 0,790            | 1,280                  | 0,700   | 0,700   |  |  |  |
| $X_i^{\max}$        | 230,0   | 16,0      | 0,990            | 1,470                  | 0,775   | 0,775   |  |  |  |
| $E_{Xi}$ , MeB      | 7,0     | 10,0      | 10,100           | 10,300                 | 10,200  | 10,200  |  |  |  |
| $\Delta_{Xi}$ , MeB | 2,0     | 3,0       | 2,400            | 2,200                  | 2,300   | 2,300   |  |  |  |



Рис. 8. Потенціали взаємодії ядер  ${}^{7}\text{Li}({}^{7}\text{Be}) + {}^{9}\text{Be}$  та  ${}^{8}\text{Be} + {}^{9}\text{Be}$  при енергії  $E_{\text{с.ц.м.}} = 31,6$  МеВ, при якій незначно проявляються порогові ефекти.

При обчисленні потенціалу V(r) взаємодії ядер <sup>7</sup>Li(<sup>7</sup>Be) + <sup>9</sup>Be використовувались розподіли нуклонів, одержані з розподілу заряду в ядрах <sup>7</sup>Li і <sup>9</sup>Be [15], а в розрахунках V(r) для <sup>8</sup>Be + <sup>9</sup>Beпотенціалу - розподіл густини нуклонів у <sup>8</sup>Be, отриманий на основі  $\alpha$ - $\alpha$ -потенціалу [16]. При цьому вважалось, що розподіли нуклонів в ядрах <sup>7</sup>Li і <sup>7</sup>Be однакові, а значить, тотожними є і фолдінг-потенціали взаємодії ядер <sup>7</sup>Li + <sup>9</sup>Be і <sup>7</sup>Be + <sup>9</sup>Be.

Фолдінг-потенціали обчислювались за допомогою програми DFPOT [17, 18].

На рис. 9 фолдінг-потенціали взаємодії ядер  ${}^{7}\text{Li} + {}^{9}\text{Be}$  і  ${}^{8}\text{Be} + {}^{9}\text{Be}$  порівнюються між собою та з дійсною частиною оптичного  ${}^{7}\text{Li} + {}^{9}\text{Be}$ -потенціалу, отриманого з підгонки експериментальних даних пружного розсіяння цих ядер при енергії  $E_{\text{лаб.}}({}^{7}\text{Li}) = 34 \text{ MeB [3]}$ . Видно, що на малих відстанях взаємодії ядер ці потенціали практично однакові. Дійсна частина оптичного  ${}^{7}\text{Li} + {}^{9}\text{Be}$ -



Рис. 9. Фолдінг-потенціали V(r) взаємодії ядер <sup>7</sup>Li + <sup>9</sup>Be і <sup>8</sup>Be + <sup>9</sup>Be (штрихові криві) у порівнянні з дійсною частиною оптичного <sup>7</sup>Li + <sup>9</sup>Be-потенціалу при енергії  $E_{c.ц.м.} = 19,1$  MeB, отриманого з аналізу експериментальних даних [3].

потенціалу та відповідний фолдінг-потенціал практично збігаються аж до відстані  $r = 6 \, \text{фм}$ , що значно перевищує радіус компаунд-ядра  $R_{\text{комп.}} =$ = 3,15 фм. На великих відстанях фолдінгпотенціал швидше спадає, ніж практично підібраний оптичний потенціал. Проте обчислені за обома потенціалами МЗКР-перерізи пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Ве відрізняються несуттєво.

## Основні результати та висновки

Підсумовуючи проведений аналіз експериментальних даних пружного розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Be i <sup>7</sup>Be + <sup>9</sup>Be за ОМ та МЗКР, можна відзначити основні результати та зробити такі висновки:

отримано набори параметрів оптичних <sup>7</sup>Li, <sup>7</sup>Be + <sup>9</sup>Be-потенціалів та визначено їх енергетичну залежність, яка значно відрізняється від відповідної залежності параметрів <sup>8</sup>Be + <sup>9</sup>Beпотенціалу, одержаного з M3KP-аналізу експериментальних даних реакції  ${}^{7}\text{Li}({}^{10}\text{B}, {}^{9}\text{Be}){}^{8}\text{Be}$  [4]; ці відмінності в енергетичній залежності параметрів  ${}^{7}\text{Be} + {}^{9}\text{Be}$ - і  ${}^{8}\text{Be} + {}^{9}\text{Be}$ -потенціалів можна назвати *ізотопічним ефектом* у розсіянні цих ядер;

визначені на основі експериментальних даних набори параметрів оптичних потенціалів <sup>7</sup>Li, <sup>7</sup>Be + <sup>9</sup>Be-розсіяння добре узгоджуються з відповідними фолдінг-потенціалами, обчисленими з використанням ефективного M3Y-потенціалу взаємодії нуклонів та припущення про однаковий розподіл нуклонів в ядрах <sup>7</sup>Li i <sup>7</sup>Be; показано, що <sup>8</sup>Be + <sup>9</sup>Be-фолдінг-потенціал суттєво відрізняється від відповідного <sup>7</sup>Be + <sup>9</sup>Be-потен-

- Verma S., Das J.J., Jhingan A. et al. Measurements of elastic scattering for <sup>7</sup>Be, <sup>7</sup>Li + <sup>9</sup>Be systems and fusion cross sections for <sup>7</sup>Li + <sup>9</sup>Be system // Eur. Phys. J. Special Topics. - 2007. - Vol. 150. - P. 75 - 78.
- Weber K.A., Meier-Ewert K., Schidt-Böcking H., Bethge K. Elastic scattering of <sup>7</sup>Li from light target nuclei // Nucl. Phys. A. - 1972. - Vol. 186. - P. 145 - 151.
- Kemper K.W., Moore G.E., Puigh R.J., White R.I. Spectroscopic information from the <sup>9</sup>Be(<sup>7</sup>Li, <sup>6</sup>He)<sup>10</sup>B and <sup>9</sup>Be(<sup>7</sup>Li, <sup>6</sup>Li)<sup>10</sup>Be reaction // Phys. Rev. C. - 1977. - Vol. 15, No. 5. - P. 1726 - 1731.
- 4. Романишин В. О., Рудчик А. Т., Кощий Є. І. та ін. Механізми реакцій <sup>7</sup>Li(<sup>10</sup>B, <sup>9</sup>Be)<sup>8</sup>Be,
   <sup>10</sup>B(<sup>7</sup>Li, <sup>9</sup>Be)<sup>8</sup>Be та потенціал взаємодії ядер <sup>8</sup>Be + + <sup>9</sup>Be // Ядерна фізика та енергетика. - 2008. -№ 2 (24). - С. 14.
- Romanyshyn V. O., Rudchik A. T., Koshchy E. I. et al. Mechanism of <sup>7</sup>Li(<sup>10</sup>B, <sup>10</sup>Be)<sup>7</sup>Be reaction and <sup>7</sup>Be + <sup>10</sup>Be-potential // In Proceedings of the 2-nd Int. Conf. "Current Problems in Nuclear Physics and Atomic Energy" (Kyiv, June 9 - 15, 2008): Book of Abstracts. - Kyiv, 2008. - P. 145.
- Videbæk F., Christensen P. R., Hansen Ole, Ulbak K. Coulomb-nuclear interference and nuclear reorientation in the scattering of <sup>16,18</sup>O by <sup>58</sup>Ni and <sup>64</sup>Ni / Nucl. Phys. A. - 1976. - Vol. 256. - P. 301 - 311.
- Smirnov Yu.F., Tchuvil'sky Yu.M. Cluster spectroscopic factors for the p-shell nuclei // Phys. Rev. C. -1977. - Vol. 15. - P. 84 - 93.
- Рудчик А. Т., Чувильский Ю. М. Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). - Киев, 1982. - 27 с. - (Препр. / АН УССР. Ин-т ядерных исслед.; КИЯИ-82-12).
- Рудчик А. Т., Чувильский Ю. М. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных пе-

ціалу лише в периферійній області взаємодії ядер;

розсіяння ядер <sup>7</sup>Li + <sup>9</sup>Be і <sup>7</sup>Be + <sup>9</sup>Be на кути  $\theta_{c.ц.м.} < 90^{\circ}$  обумовлене, в основному, потенціальним розсіянням, а виліт іонів на великі кути відбувається, згідно з МЗКР-розрахунками, процесами реорієнтації ядер <sup>7</sup>Li, <sup>7</sup>Be і <sup>9</sup>Be та (<sup>7</sup>Li, <sup>9</sup>Be)реакцією передачі дейтрона; передача динейтрона 2*n* в (<sup>7</sup>Be, <sup>9</sup>Be)-реакції не відіграє суттєвої ролі в <sup>7</sup>Be + <sup>9</sup>Be-розсіянні; реакції двоступінчастих передач нуклонів мають другорядне значення в обох досліджуваних видах пружного розсіяння.

### СПИСОК ЛІТЕРАТУРИ

редач // УФЖ. - 1985. - Т. 30, № 6. - С. 819 - 825.

- 10. Бояркина А. Н. Структура ядер 1*р*-оболочки. М.: Изд-во Москов. ун-та, 1973. 62 с.
- Nilsson B. S. SPI-GENOA: an Optical Model Search-Code. 1976 (Report/A Niels Bohr Institute).
- Thompson I. J. Coupled reaction channels calculations in nuclear physics // Comp. Phys. Rep. - 1988. -Vol. 7. - P. 167 - 212.
- 13. Rudchik A. T., Budzanowski A., Chernievsky V. K. et al. The <sup>11</sup>B + <sup>12</sup>C elastic and inelastic scattering at  $Elab(^{11}B) = 49$  MeV and energy dependence of the <sup>11</sup>B + <sup>12</sup>C interaction // Nucl. Phys. A. 2001. Vol. 695. P. 51 68.
- 14. Mahaux C., Ngö H., Satchler G. R., Casuality and the threshold anomaly of the nucleus-nucleus potential // Nucl. Phys. A. - 1986. - 449. P. 354 - 394.
- 15. *De Vries H., Jager C.W., De Vries C. //* Atomic Data and Nuclear Data Tables. 1987. Vol. 36. P. 495 536.
- 16. Mohr P., Abele H., Kölle V. et al. Properties of <sup>8</sup>Be and <sup>12</sup>C deduced from the folding-potential model // Z. Phys. A. - 1994. - Vol. 349. - P. 339 - 340.
- 17. Cook J. DFPOT a program for the calculation of double folded potentials // Comp. Phys. Com. 1982.
   Vol. 25, Is. 2. P. 125 139.
- Cook J. Dfpot a program for the calculation of double folded potentials // Ibid. 1984. Vol. 35. P. C 775.
- Rudchik A. A., Rudchik A. T., Ponkratenko O. A., Kemper K. W. The approach of coupled reaction channels to <sup>7</sup>Li + <sup>11</sup>B scattering // Ukr. Phys. J. - 2005.
   Vol. 50, No. 9. - P. 907 - 914.
- 20. Rudchik A. T., Kyryanchuk V. M., Budzanowski A. et al. Mechanism of large angle enhancement of the <sup>9</sup>Be + <sup>11</sup>B scattering. // Nucl. Phys. A. 2003. Vol. 714. P. 391 411.

# МЕХАНИЗМЫ УПРУГОГО РАССЕЯНИЯ ЯДЕР <sup>7</sup>Li, <sup>7</sup>Be + <sup>9</sup>Be И ОПТИЧЕСКИЕ ПОТЕНЦИАЛЫ ИХ ВЗАИМОДЕЙСТВИЯ

#### А. Т. Рудчик, В. А. Романишин, В. Н. Кирьянчук, О. А. Понкратенко, В. В. Улещенко

Проанализированы известные из литературы экспериментальные данные упругого рассеяния ядер <sup>7</sup>Li + <sup>9</sup>Be и <sup>7</sup>Be + <sup>9</sup>Be при энергиях  $E_{\text{лаб.}}(^{7}\text{Li}) = 15,75$ ; 24; 30 и 34 МэB и  $E_{\text{лаб.}}(^{7}\text{Be}) = 17, 19$  и 21 МэB по оптической модели

и методом связанных каналов реакций с учетом роли процессов реориентации ядер <sup>7</sup>Li, <sup>7</sup>Be и <sup>9</sup>Be, а также реакций одно- и двухступенчатых передач в этом рассеянии. Получены наборы параметров оптических потенциалов взаимодействия ядер <sup>7</sup>Li + <sup>9</sup>Be и <sup>7</sup>Be + <sup>9</sup>Be, их энергетическая зависимость и определены механизмы упругого рассеяния этих ядер. Исследованы изобарические и изотопические отличия параметров потенциалов взаимодействия ядер <sup>7</sup>Li + <sup>9</sup>Be, <sup>8</sup>Be + <sup>9</sup>Be.

# MECHANISM OF ELASTIC SCATTERING OF <sup>7</sup>Li, <sup>7</sup>Be + <sup>9</sup>Be NUCLEI AND OPTICAL POTENTIALS OF THEIR INTERACTION

## A. T. Rudchik, V. O. Romanyshyn, V. M. Kyryanchuk, O. A. Ponkratenko, V. V. Uleshchenko

<sup>7</sup>Li + <sup>9</sup>Be and <sup>7</sup>Be + <sup>9</sup>Be elastic scattering data at the energies  $E_{lab}(^{7}Li) = 15.75$ , 24, 30, 34 MeV and  $E_{lab}(^{7}Be) = 17$ , 19 and 21 MeV were analyzed within the optical model and coupled-reaction-channels method taking into account <sup>7</sup>Li, <sup>7</sup>Be and <sup>9</sup>Be reorientations, as well as one- and two-step transfers for these scattering. Sets of optical model parameters were deduced for the interaction of <sup>7</sup>Li + <sup>9</sup>Be and <sup>7</sup>Be + <sup>9</sup>Be nuclei, as well as their energy dependence and mechanism of the elastic scattering of these nuclei was obtained. Isobaric and isotopic differences for the parameters of <sup>7</sup>Li + <sup>9</sup>Be, <sup>7</sup>Be + <sup>9</sup>Be and <sup>8</sup>Be + <sup>9</sup>Be-potentials were studied.

Надійшла до редакції 14.10.08, після доопрацювання - 12.12.08.