ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Influence of dead layer on the response function of planar and coaxial Ge detector using Monte Carlo method
R. A. El-Tayebany*, N. Shaaban
Nuclear and Radiological Safety Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
*Corresponding author. E-mail address:
rreltyebany@gmail.com
Abstract: Germanium crystals have a dead layer that causes a decrease in efficiency since the layer is not useful for detection but strongly attenuates photons. The thickness of this inactive layer is not well known due to the existence of a transition zone where photons are increasingly absorbed. Therefore, using data provided by manufacturers in the detector simulation model, some strong discrepancies appear by changing the dead layer. Investigations into the Ge detector response functions for gamma rays have been conducted using straightforward physical mechanisms implemented by Monte Carlo simulations. The detector response function feature's most probable interaction mechanisms are described. The Monte Carlo method is applied to simulate the calibration of a HPGe detector in order to determine the total inactive germanium layer thickness and the active volume that is needed in order to study the response function for both types of detectors. Results indicated a strong impact of dead layer variations on the response function of the simulated detectors.
Keywords: dead layer, MCNPX, coaxial Ge, planar Ge, detection efficiency, gamma-ray.
References:1. J. Nikolic et al. Calculation of HPGe efficiency for environmental samples: comparison of EFFTRAN and GEANT4. Nucl. Instrum. Meth. A 763 (2014) 347. https://doi.org/10.1016/j.nima.2014.06.044
2. K. Abbas et al. Reliability of two calculation codes for efficiency calibrations of HPGe detectors. Appl. Radiat. Isot. 56 (2002) 703. https://doi.org/10.1016/S0969-8043(01)00269-X
3. S.M. Modarresi, S.F. Masoudi, M. Karimi. A method for considering the spatial variations of dead layer thickness in HPGe detectors to improve the FEPE calculation of bulky samples. Radiat. Phys. Chem. 130 (2017) 291. https://doi.org/10.1016/j.radphyschem.2016.08.020
4. J.G. Guerra et al. A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms. J. Environ. Radioact. 149 (2015) 8. https://doi.org/10.1016/j.jenvrad.2015.06.017
5. L. Trnková, P. Rulík. Low background shielding of HPGe detector. Appl. Radiat. Isot. 67(5) (2009) 723. https://doi.org/10.1016/j.apradiso.2009.01.079
6. L.-C. He et al. Summing coincidence correction for γ-ray measurements using the HPGe detector with a low background shielding system. Nucl. Instrum. Meth. A 880 (2018) 22. https://doi.org/10.1016/j.nima.2017.09.043
7. H.D. Chuong et al. Estimating thickness of the inner dead-layer of n-type HPGe detector. Appl. Radiat. Isot. 116 (2016) 174. https://doi.org/10.1016/j.apradiso.2016.08.010
8. M.T. Haj-Heidari et al. Method for developing HPGe detector model in Monte Carlo simulation codes. Radiat. Meas. 88 (2016) 1. https://doi.org/10.1016/j.radmeas.2016.02.035
9. M.H. Bolükdemir et al. Investigation of shape effects and dead layer thicknesses of a coaxial HPGe crystal on detector efficiency by using PHITS Monte Carlo simulation. Radiat. Phys. Chem. 189 (2021) 109746. https://doi.org/10.1016/j.radphyschem.2021.109746
10. A. Elanique et al. Dead layer thickness characterization of an HPGe detector by measurements and Monte Carlo simulations. Appl. Radiat. Isot. 70(3) (2012) 538. https://doi.org/10.1016/j.apradiso.2011.11.014
11. R.M. Keyser, R.C. Hagenauer. Performance of a portable, electromechanically-cooled HPGe detector for site characterization. J. Radioanal. Nucl. Chem. 277 (2008) 149. https://doi.org/10.1007/s10967-008-0723-6
12. M.S. Badawi et al. New analytical approach to calibrate the co-axial HPGe detectors including correction for source matrix self-attenuation. Appl. Radiat. Isot. 70(12) (2012) 2661. https://doi.org/10.1016/j.apradiso.2012.08.014
13. W. Khan et al. Monte Carlo simulation of the full energy peak efficiency of an HPGe detector. Appl. Radiat. Isot. 131 (2018) 67. https://doi.org/10.1016/j.apradiso.2017.11.018
14. N.Q. Huy. The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector. Nucl. Instrum. Meth. A 621(1-3) (2010) 390. https://doi.org/10.1016/j.nima.2010.05.007
15. L.T. Yang et al. (CDEX Collaboration). Search for light weakly-interacting-massive-particle dark matter by annual modulation analysis with a point-contact germanium detector at the China Jinping Underground Laboratory. Phys. Rev. Lett. 123 (2019) 221301. https://doi.org/10.1103/PhysRevLett.123.221301
16. J. Gasparro et al. Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges. Nucl. Instrum. Meth. A 594(2) (2008) 196. https://doi.org/10.1016/j.nima.2008.06.022
17. E. Andreotti et al. Determination of dead-layer variation in HPGe detectors. Appl. Radiat. Isot. 87 (2014) 331. https://doi.org/10.1016/j.apradiso.2013.11.046
18. F. Courtine et al. Ge well detector calibration by means of a trial and error procedure using the dead layers as a unique parameter in a Monte Carlo simulation. Nucl. Instrum. Meth. A 596(2) (2008) 229. https://doi.org/10.1016/j.nima.2008.07.155
19. J. Rodenas et al. Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl. Instrum. Meth. A 496(2-3) (2003) 390. https://doi.org/10.1016/S0168-9002(02)01748-5
20. R. Luís et al. Parameter optimization of a planar BEGe detector using Monte Carlo simulations. Nucl. Instrum. Meth. A 623(3) (2010) 1014. https://doi.org/10.1016/j.nima.2010.08.020
21. A. Azbouche, M. Belamri, T. Théophile. Study of the germanium dead layer influence on HP (Ge) detector efficiency by Monte Carlo simulation. Radiat. Detect. Technol. Meth. 2(2) (2018) 1. https://doi.org/10.1007/s41605-018-0074-y
22. L.T.N. Trang, H.D. Chuong, T.T. Thanh. Optimization of p-type HPGe detector model using Monte Carlo simulation. J. Radioanal. Nucl. Chem. 327(1) (2021) 287. https://doi.org/10.1007/s10967-020-07473-2
23. X-5 Monte Carlo Team. MCNP-A General Monte Carlo N-Particle Transport Code. Version 5. Vol. I: Overview and Theory. LA-UR-03-1987 (Los Alamos, Los Alamos National Laboratory, 2003). https://mcnpx.lanl.gov/pdf_files/TechReport_2003_LANL_LA-UR-03-1987Revised212008_SweezyBoothEtAl.pdf
24. S. Agostinelli et al. Geant4 - a simulation toolkit. Nucl. Instrum. Meth. A 506 (2003) 250. https://doi.org/10.1016/S0168-9002(03)01368-8
25. F. Salvat, J.M. Fernandez-Varea, J. Sempau. PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Workshop Proceedings, Barcelona, Spain 4 - 7 July 2011 (NEA/OECD 2011) 385 p. https://www.oecd-nea.org/science/docs/2011/nsc-doc2011-5
26. S. Hurtado, M. Garcia-León, R. Garcia-Tenorio. Monte Carlo simulation of the response of a germanium detector for low-level spectrometry measurements using GEANT4. Appl. Radiat. Isot. 61(2-3) (2004) 139. https://doi.org/10.1016/j.apradiso.2004.03.035
27. C.M. Salgado, C.C. Conti, P.H.B. Becker. Determination of HPGe detector response using MCNP5 for 20 - 150 keV X-rays. Appl. Radiat. Isot. 64(6) (2006) 700. https://doi.org/10.1016/j.apradiso.2005.12.011
28. A. Tomal et al. Response functions of Si (Li), SDD and CdTe detectors for mammographic x-ray spectroscopy. Appl. Radiat. Isot. 70(7) (2012) 1355. https://doi.org/10.1016/j.apradiso.2011.11.044
29. A. Tomal et al. Monte Carlo simulation of the response functions of CdTe detectors to be applied in x-ray spectroscopy. Appl. Radiat. Isot. 100 (2015) 32. https://doi.org/10.1016/j.apradiso.2015.01.008
30. H.D. Chuong et al. Estimating thickness of the inner dead-layer of n-type HPGe detector. Appl. Radiat. Isot. 116 (2016) 174. https://doi.org/10.1016/j.apradiso.2016.08.010
31. W. El-Gammal. Verification of 235U mass content in nuclear fuel plates by an absolute method. Nucl. Instrum. Meth. A 570(3) (2007) 446. https://doi.org/10.1016/j.nima.2006.09.114