Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 4, pages 324-335.
Section: Nuclear Physics.
Received: 28.06.2023; Accepted: 22.11.2023; Published online: 28.12.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.04.324

Study on the decay of Z = 127 – 132 superheavy nuclei via emission of 1-n and 2-n halo nuclei

K. Prathapan1, M. K. Preethi Rajan2, R. K. Biju1,3,*

1 Department of Physics, Government Brennen College, Thallassery, India
2 Department of Physics, Payyanur College, Payyanur, India
3 Department of Physics, Pazhassi Raja NSS College, Mattanur, India


*Corresponding author. E-mail address: bijurkn@gmail.com

Abstract: The barrier penetrability, decay constant and decay half-life of 1-n halo nuclei 11Be, 15,17,19C, 22N, 23O, 24,26F, 29,31Ne, 34,37Na, 35,37Mg, and 55Ca; and 2-n halo nuclei 22C, 27,29F, 34Ne, 36Na, and 46P from Z = 127 – 132 parents were calculated within the framework of the Coulomb and proximity potential model by calculating the Q-values using the finite-range droplet model. A comparison between the decay half-lives is made by considering the halo candidates as a normal cluster and as a deformed structure with a rms radius. Neutron shell closure at 190, 196, 198, 200, 204, and 208 are identified from the plot of decay half-lives versus the neutron number of daughter nuclei (NP). The calculation of alpha decay half-life and spontaneous decay half-life showed that the majority of the parent nuclei survive spontaneous fission and decay through alpha emission. The Geiger-Nuttall plots of log10T1/2 versus Q-1/2 and universal plots of log10T1/2 versus -lnP for the emission of all 1-n and 2-n halo nuclei from the parents considered here are linear and show the validity of Geiger - Nuttall law in the case of decay of halo nuclei from superheavy elements.

Keywords: cluster radioactivity, halo nuclei, superheavy elements.

References:

1. P.G. Hansen, B. Jonson. The neutron halo of extremely neutron rich nuclei. Europh. Lett. 4(4) (1987) 409. https://doi.org/10.1209/0295-5075/4/4/005

2. J. Al-Khalili. An introduction to halo nuclei. Lect. Notes Phys. 651 (2004) 77. https://doi.org/10.1007/978-3-540-44490-9_3

3. J. Al-Khalili, F. Nunes. Reaction models to probe the structure of light exotic nuclei. J. Phys. G 29(11) (2003) R89. https://doi.org/10.1088/0954-3899/29/11/R01

4. P.G. Hansen, A.S. Jensen, B. Jonson. Nuclear halos. Ann. Rev. Nucl. Part. Sci. 45 (1995) 591. https://doi.org/10.1146/annurev.ns.45.120195.003111

5. I. Tanihata et al. Measurement of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55 (1985) 2676. https://doi.org/10.1103/PhysRevLett.55.2676

6. R. Kanungo et al. Proton distribution radii of 12-19C illuminate features of neutron halos. Phys. Rev. Lett. 117 (2016) 102501. https://doi.org/10.1103/PhysRevLett.117.102501

7. A. Estrade et al. Proton radii of 12-17B define a thick neutron surface in 17B. Phys. Rev. Lett. 113 (2014) 132501. https://doi.org/10.1103/PhysRevLett.113.132501

8. T. Bjerge, K. Brostrom. Ray spectrum of radio helium. Nature 138 (1936) 400. https://doi.org/10.1038/138400b0

9. S. Bottoni et al. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei. Phys. Rev. C 92 (2015) 024322. https://doi.org/10.1103/PhysRevC.92.024322

10. N. Kobayashi et al. One- and two-neutron removal reactions from the most neutron-rich carbon isotopes. Phys. Rev. C 86 (2012) 054604. https://doi.org/10.1103/PhysRevC.86.054604

11. S.E.A. Orrigo, H. Lenske. Pairing resonances and continuum spectroscopy of 10Li. Phys. Lett. B 677 (2009) 214. https://doi.org/10.1016/j.physletb.2009.05.024

12. B. Jonson. Light dripline nuclei. Phys. Rep. 389 (2004) 1. https://doi.org/10.1016/j.physrep.2003.07.004

13. M.K. Sharma et al. Search for halo structure in 37Mg using the Glauber model and microscopic relativistic mean-field densities. Phys. Rev. C 93 (2016) 014322. https://doi.org/10.1103/PhysRevC.93.014322

14. J. Al-Khalili, K. Arai. Excited state halos in 10Be. Phys. Rev. C 74 (2006) 034312. https://doi.org/10.1103/PhysRevC.74.034312

15. H.Y. Zhang et al. Measurement of reaction cross section for proton-rich nuclei (A < 30) at intermediate energies. Nucl. Phys. A 707 (2002) 303. https://doi.org/10.1016/S0375-9474(02)01007-2

16. I. Tanihata et al. Measurements of interaction cross sections and radii of He isotopes. Phys. Lett. B 160 (1985) 380. https://doi.org/10.1016/0370-2693(85)90005-X

17. A. Di Pietro et al. Experimental study of the collision 11Be + 64Zn around the Coulomb barrier. Phys. Rev. C 85 (2012) 054607. https://doi.org/10.1103/PhysRevC.85.054607

18. S. Ahmad, A.A. Usmani, Z.A. Khan. Matter radii of light proton-rich and neutron-rich nuclear isotopes. Phys. Rev. C 96 (2017) 064602. https://doi.org/10.1103/PhysRevC.96.064602

19. T. Nakamura et al. Halo structure of the island of inversion nucleus 31Ne. Phys. Rev. Lett. 103 (2009) 262501. https://doi.org/10.1103/PhysRevLett.103.262501

20. M. Takechi et al. Evidence of halo structure in 37Mg observed via reaction cross sections and intruder orbitals beyond the island of inversion. Phys. Rev. C 90 (2014) 061305(R). https://doi.org/10.1103/PhysRevC.90.061305

21. M. Ismail, I.A.M. Abdul-Magead, Samar Gamal. Prediction of magic numbers of heavy and super heavy nuclei from the behavior of α decay half-lives. IOSR J. Appl. Phys. 9(5) (2017) 64. https://www.iosrjournals.org/iosr-jap/papers/Vol9-issue5/Version-3/L0905036470.pdf

22. R.K. Gupta, S.K. Patra, W. Greiner. Structure of 294,302120 Nuclei Using the Relativistic Mean-Field Method. Mod. Phys. Lett. A 12 (1997) 1727. https://doi.org/10.1142/S021773239700176X

23. M.V. Zhukov et al. Bound state properties of Borromean halo nuclei: 6He and 11Li. Phys. Rep. 231 (1993) 151. https://doi.org/10.1016/0370-1573(93)90141-Y

24. D.J. Dean, M. Hjorth-Jensen. Pairing in nuclear systems: from neutron stars to finite nuclei. Rev. Mod. Phys. 75 (2003) 607. https://doi.org/10.1103/RevModPhys.75.607

25. A. Ono et al. Fragment formation studied with antisymmetrized version of molecular dynamics with two-nucleon collisions. Phys. Rev. Lett. 68(1992) 2898. https://doi.org/10.1103/PhysRevLett.68.2898

26. Y.K. Gambhir, P. Ring, A. Thimet. Relativistic mean field theory for finite nuclei. Ann. Phys. 198 (1990) 132. https://doi.org/10.1016/0003-4916(90)90330-Q

27. S. Hofmann, G. Münzenberg. The discovery of the heaviest elements. Rev. Mod. Phys. 72 (2000) 733. https://doi.org/10.1103/RevModPhys.72.733

28. Yu. Oganessian. Heaviest nuclei from 48Ca-induced reactions. J. Phys. G 34(2007) R165. https://doi.org/10.1088/0954-3899/34/4/R01

29. Yu.Ts. Oganessian et al. Synthesis of the isotope 282113 in the 237Np + 48Ca fusion reaction. Phys. Rev. C 76 (2007) 011601(R). https://doi.org/10.1103/PhysRevC.76.011601

30. V.Yu. Denisov, S. Hofmann. Formation of superheavy elements in cold fusion reactions. Phys. Rev. C 61 (2000) 034606. https://doi.org/10.1103/PhysRevC.61.034606

31. S. Hofmann. Synthesis of superheavy elements using radioactive beams and targets. Prog. Part. Nucl. Phys. 46 (2001) 293. https://doi.org/10.1016/S0146-6410(01)00134-X

32. J.H. Hamilton, S. Hofmann, Y.T. Oganessian. Search for super heavy nuclei. Annu. Rev. Nucl. Part. Sci. 63 (2013) 383. https://doi.org/10.1146/annurev-nucl-102912-144535

33. Yu.Ts. Oganessian, V.K. Utyonkov. Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 944 (2015) 62. https://doi.org/10.1016/j.nuclphysa.2015.07.003

34. N. Wang et al. Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets. Phys. Rev. C 85 (2012) 041601(R). https://doi.org/10.1103/PhysRevC.85.041601

35. Yu.Ts. Oganessian et al. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys. Rev. C 74 (2006) 044602. https://doi.org/10.1103/PhysRevC.74.044602

36. Z.-H. Liu, J.-D. Bao. Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z = 119 via the 50Ti + 249Bk hot fusion reaction. Phys. Rev. C 84 (2011) 031602(R). https://doi.org/10.1103/PhysRevC.84.031602

37. K.P. Santhosh, V. Safoora. Synthesis of 292-303119 superheavy elements using Ca- and Ti-induced reactions. Phys. Rev. C 96 (2017) 034610. https://doi.org/10.1103/PhysRevC.96.034610

38. F. Li. Predictions for the synthesis of superheavy elements Z = 119 and 120. Phys. Rev. C 98 (2018) 014618. https://doi.org/10.1103/PhysRevC.98.014618

39. L. Zhu, W.-J. Xie, F.-S. Zhang. Production cross sections of superheavy elements Z = 119 and 120 in hot fusion reactions. Phys. Rev. C 89 (2014) 024615. https://doi.org/10.1103/PhysRevC.89.024615

40. R.W. Lougheed et al. Search for superheavy elements using the 48Ca + 254Esg reaction. Phys. Rev. C 32 (1985) 1760. https://doi.org/10.1103/PhysRevC.32.1760

41. S. Hofmann et al. Review of even element super-heavy nuclei and search for element 120. Eur. Phys. J. A 52 (2016) 180. https://doi.org/10.1140/epja/i2016-16180-4

42. K.P. Santhosh, C. Nithya. Prediction on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136. Atom. Data Nucl. Data Tabl. 119 (2018) 33. https://doi.org/10.1016/j.adt.2017.03.003

43. K.P. Santhosh, B. Priyanka, C. Nithya. Feasibility of observing the α decay chains from isotopes of SHN with Z = 128, Z = 126, Z = 124 and Z = 122. Nucl. Phys. A 955(2016) 156. https://doi.org/10.1016/j.nuclphysa.2016.06.010

44. H.C. Manjunatha. Comparison of alpha decay with fission for isotopes of superheavy nuclei Z = 124. Int. J. Mod. Phys. E 25 (2016) 1650074. https://doi.org/10.1142/S0218301316500749

45. H.C. Manjunatha. Alpha decay properties of superheavy nuclei Z = 126. Nucl. Phys. A 945 (2016) 42. https://doi.org/10.1016/j.nuclphysa.2015.09.014

46. K.P. Anjali, K. Prathapan, R.K. Biju. Studies on the existence of various 1p, 2p halo isotopes via cluster decay of nuclei in superheavy region. Braz. J. Phys. 50(1) (2020) 71. https://doi.org/10.1007/s13538-019-00719-9

47. K.P. Anjali, K. Prathapan, R.K. Biju. A study on the emission of 1, 2 proton halo nuclei from parent with Z = 121 – 128 in the superheavy nuclei via cluster radioactivity. Braz. J. Phys. 50 (2020) 298. https://doi.org/10.1007/s13538-020-00750-1

48. K.P. Santhosh, R.K. Biju, S. Sahadevan. Cluster formation probability in the trans-tin and trans-lead nuclei. Nucl. Phys. A 838 (2010) 38. https://doi.org/10.1016/j.nuclphysa.2010.03.004

49. Y.-J. Shi, W.J. Swiatecki. Theoretical estimates of the rates of radioactive decay of radium isotopes by 14C emission. Phys. Rev. Lett. 54 (1985) 300. https://doi.org/10.1103/PhysRevLett.54.300

50. J. Blocki et al. Proximity forces. Ann. Phys. 105 (1977) 427. https://doi.org/10.1016/0003-4916(77)90249-4

51. J. Blocki, W.J. Swiatecki. A generalization of the proximity force theorem. Ann. Phys. 132 (1981) 53. https://doi.org/10.1016/0003-4916(81)90268-2

52. D.N. Poenaru et al. Atomic nuclei decay modes by spontaneous emission of heavy ions. Phys. Rev. C 32 (1985) 572. https://doi.org/10.1103/PhysRevC.32.572

53. K.P. Santhosh, I. Sukumaran, B. Priyanka. Theoretical studies on the alpha decay of 178-220Pb isotopes. Nucl. Phys. A 935 (2015) 28. https://doi.org/10.1016/j.nuclphysa.2014.12.008

54. K.P. Santhosh, I. Sukumaran. Decay of Z = 82 – 102 heavy nuclei via emission of one-proton and two-proton halo nuclei. Pramana J. Phys. 92 (2019) 6. https://doi.org/10.1007/s12043-018-1672-4

55.K.P. Santhosh, C. Nithya. Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 < Z < 135. Atom. Data Nucl. Data Tabl. 121-122 (2018) 216. https://doi.org/10.1016/j.adt.2017.12.001

56. K.P. Santhosh, I. Sukumaran. Decay of heavy particles from Z = 125 superheavy nuclei in the region A = 295 – 325 using different versions of proximity potential. Int. J. Mod. Phys. E 26(03) (2017) 1750003. https://doi.org/10.1142/S0218301317500033

57. K.P. Santhosh, B. Priyanka. Probable cluster decays from 270-318118 superheavy nuclei. Int. J. Mod. Phys. E 23(10) (2014) 1450059. https://doi.org/10.1142/S0218301314500591

58. K.P. Santhosh, R.K. Biju. Alpha decay, cluster decay and spontaneous fission in 294-326122 isotopes. J. Phys. G 36(1) (2009) 015107. https://doi.org/10.1088/0954-3899/36/1/015107

59. D.N. Poenaru, I.-H. Plonski, W. Greiner. α-decay half-lives of superheavy nuclei. Phys. Rev. C 74 (2006) 014312. https://doi.org/10.1103/PhysRevC.74.014312

60. G. Royer, H.F. Zhang. Recent α decay half-lives and analytic expression predictions including superheavy nuclei. Phys. Rev. C 77 (2008) 037602. https://doi.org/10.1103/PhysRevC.77.037602

61. V.E. Viola, G.T. Seaborg. Nuclear systematics of the heavy elements – II Lifetimes for alpha, beta and spontaneous fission decay. J. Inorg. Nucl. Chem. 28 (1966) 741. https://doi.org/10.1016/0022-1902(66)80412-8

62. A. Zdeb, M. Warda, C.M. Petrache. Proton emission half-lives within a Gamow-like model. Eur. Phys. J. A 52 (2016) 323. https://doi.org/10.1140/epja/i2016-16323-7

63. Y. Hatsukawa, H. Nakahara, D.C. Hoffman. Systematics of alpha decay half-lives. Phys. Rev. C 42 (1990) 674. https://doi.org/10.1103/PhysRevC.42.674

64. K.P. Anjali, K. Prathapan, R.K. Biju. Studies on the emission of various exotic fragments from superheavy nuclei via cluster decay process. Nucl. Phys. A 993 (2020) 121644. https://doi.org/10.1016/j.nuclphysa.2019.121644

65. K. Prathapan, K.P. Anjali, R.K. Biju. Existence of 15-21N, 17-23O, and 19-25F neutron halo nuclei via cluster decay process in the superheavy region. Braz. J. Phys. 49(5) (2019) 752. https://doi.org/10.1007/s13538-019-00681-6

66. K.P. Santhosh, I. Sukumaran. A systematic study on 1neutron and 2neutron halo nuclei using coulomb and nuclear proximity potential. Braz. J. Phys. 48 (2018) 497. https://doi.org/10.1007/s13538-018-0585-5

67. V.Y. Denisov, H. Ikezoe. α-nucleus potential for α decay and sub-barrier fusion. Phys. Rev. C 72 (2005) 064613. https://doi.org/10.1103/PhysRevC.72.064613

68. K.-N. Huang et al. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations 2 ≤ Z ≤ 106. Atom. Data Nucl. Data Tabl. 18 (1976) 243. https://doi.org/10.1016/0092-640X(76)90027-9

69. H. Koura. Nuclidic mass formula on a spherical basis with an improved even-odd term. Prog. Theor. Phys. 113 (2005) 305. https://doi.org/10.1143/PTP.113.305

70. P. Möller et al. Nuclear ground-state masses and deformations: FRDM (2012). Atom. Data Nucl. Data Tabl. 109-110 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.002

71. A. Ozawa, T. Suzuki, I. Tanihata. Nuclear size and related topics. Nucl. Phys. A 693 (2001) 32. https://doi.org/10.1016/S0375-9474(01)01152-6

72. M.Y. Ismail et al. Effect of choosing the Qα-values and daughter density distributions on the magic numbers predicted by α decays. Ann. Phys. 406 (2019) 1. https://doi.org/10.1016/j.aop.2019.03.020

73. C. Xu, Z. Ren, Y. Guo. Competition between α decay and spontaneous fission for heavy and superheavy nuclei. Phys. Rev. C 78 (2008) 044329. https://doi.org/10.1103/PhysRevC.78.044329

74. A. Sobiczewski, Z. Patyk, S. Ćwiok. Deformed superheavy nuclei. Phys. Lett. B 224 (1989) 1. https://doi.org/10.1016/0370-2693(89)91038-1

75. C. Qi et al. Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law. Phys. Rev. C 80 (2009) 044326. https://doi.org/10.1103/PhysRevC.80.044326

76. I. Muntian, Z. Patyk, A. Sobiczewski. Calculated masses of heaviest nuclei. Phys. Atom. Nucl. 66 (2003) 1015. https://doi.org/10.1134/1.1586412

77. S. Hofmann. Search for isotopes of element 120 on the island of SHN. In: International Symposium on Exotic Nuclei. EXON-2014. Kaliningrad, Russia, 8 - 13 September 2014. Yu.E. Penionzhkevich, Yu.G. Sobolev (Eds.) (World Scientific Publishing Co. Pte. Ltd., 2015) p. 213. https://doi.org/10.1142/9789814699464_0023

78. S. Hofmann. Overview and perspectives of SHE research at GSI SHIP. In: W. Greiner (Ed.). Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series (Switzerland, Springer Int. Publ., 2013) p. 23. https://doi.org/10.1007/978-3-319-00047-3_2

79. S. Heinz. Multinucleon transfer reactions – a pathway to new heavy and superheavy nuclei? J. Phys.: Conf. Ser. 1014 (2018) 012005. https://doi.org/10.1088/1742-6596/1014/1/012005

80. S. Hofmann. Super-heavy nuclei. J. Phys. G 42 (2015) 114001. https://doi.org/10.1088/0954-3899/42/11/114001

81. J. Khuyagbaatar et al. Fission in the landscape of heaviest elements: Some recent examples. EPJ Web Conf. 131 (2016) 03003. https://doi.org/10.1051/epjconf/201613103003

82. T. Niwase et al. Development of an “α-TOF” detector for correlated measurement of atomic masses and decay properties. Nucl. Instrum. Meth. A 953 (2020) 163198. https://doi.org/10.1016/j.nima.2019.163198

83. S. Ishizawa et al. Improvement of the detection efficiency of a time-of-flight detector for superheavy element search. Nucl. Instrum. Meth. A 960 (2020) 163614. https://doi.org/10.1016/j.nima.2020.163614

84. H. Geiger, J.M. Nuttall. The ranges of the α particles from various radioactive substances and a relation between range and period of transformation. Philos. Mag. 22 (1911) 613. https://doi.org/10.1080/14786441008637156

85. C. Qi, R.J. Liotta, R. Wyss. Generalization of the Geiger-Nuttall law and alpha clustering in heavy nuclei. J. Phys.: Conf. Ser. 381 (2012) 012131. https://doi.org/10.1088/1742-6596/381/1/012131

86. S. Kumar, R.K. Gupta. Measurable decay modes of barium isotopes via exotic cluster emissions. Phys. Rev. C 49 (1994) 1922. https://doi.org/10.1103/PhysRevC.49.1922

87. S. Kumar, D. Bir, R.K. Gupta. 100daughter α-nuclei cluster decays of some neutron-deficient Xe to Gd parents: Sn radioactivity. Phys. Rev. C 51 (1995) 1762. https://doi.org/10.1103/PhysRevC.51.1762

88. K.P. Santhosh, A. Joseph. Exotic decay in Ba isotopes via 12C emission. Pramana J. Phys. 55 (2000) 375. https://doi.org/10.1007/s12043-000-0067-4

89. K.P. Santhosh, A. Joseph. Exotic decay in cerium isotopes. Pramana J. Phys. 58 (2002) 611. https://doi.org/10.1007/s12043-002-0019-2