Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 4, pages 316-323.
Section: Nuclear Physics.
Received: 22.05.2023; Accepted: 22.11.2023; Published online: 28.12.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.04.316

A comparison between theoretical results and experimental data of transition probability B(E2), deformation parameter, and intrinsic quadrupole moments for different nuclei with mass number A = 44

A. H. Ali1,2,*

1 College of Medicine, University of Fallujah, Fallujah, Iraq
2 Biotechnology and Environmental Center, University of Fallujah, Anbar, Iraq


*Corresponding author. E-mail address: dr.ahmedphysics@uofallujah.edu.iq

Abstract: A comparison has been made between theoretical results and the experimental data for different nuclei (even-even) that possess the same mass number A = 44 and which have close values of the experimental deformation parameter such as 16S44, 18Ar44, 20Ca44 and 22Ti44. The core-polarization effects and model space were adopted through the inclusion of effective charges. Transition probability B(E2), theoretical deformation parameters, and theoretical intrinsic quadruple moments were calculated using two different interactions for each case, the first case the hasp interaction for nuclei in the sd shell, and the fpd6 interaction for nuclei in the fp shell, the second case the vpnp interaction for nuclei in the sd shell, and the kb3 interaction for nuclei in the fp shell, as well as adopted to different effective charges, such as Bohr and Mottelson effective charges, standard effective charges, and the effective charges from program NuShellX. The theoretical results of the transition probability B(E2), deformations parameters, and intrinsic quadruple moments were compared and found to be close to the experimental values for these nuclei.

Keywords: comparison, deformation parameter, effective charges, nuclei, intrinsic quadruple moments.

References:

1. A.H. Ali, M.T. Idrees. Study of deformation parameters (β2, δ) for 18,20,22,24,26,28Ne isotopes in sdpf-shell. Karbala Int. J. Mod. Sci. 6(1) (2020) 11. https://doi.org/10.33640/2405-609X.1376

2. Y. Akiyama, A. Arima, T. Sebe. The structure of the sd shell nuclei: (IV). 20Ne, 21Ne, 22Ne, 22Na and 24Mg. Nucl. Phys. A 138(2) (1969) 273. https://doi.org/10.1016/0375-9474(69)90336-4

3. R.A. Radhi, G.N. Flaiyh, E.M. Raheem. Electric Quadrupole Transitions of Some Even-Even Neon Isotopes. Iraqi J. Sci. 56(2A) (2015) 1047. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/10197/3552

4. A.H. Ali. Shell Model for Study Quadrupole Transition Rates in B2 in Some Neon Isotopes in sd-shell with Using Different Interactions. J. Astrophys. Aerospace Technol. 6(1) (2018) 160. https://doi.org/10.4172/2329-6542.1000160

5. H. Hasper. Large scale shell-model calculations in the upper part of the sd shell: General description and energy levels for A = 36 - 39. Phys. Rev. C 19 (1979) 1482. https://doi.org/10.1103/PhysRevC.19.1482

6. T.T.S. Kuo, G.E. Brown. Reaction matrix elements for the 0f-1p shell nuclei. Nucl. Phys. A 114(2) (1968) 241. https://doi.org/10.1016/0375-9474(68)90353-9

7. M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes. Realistic effective interactions for nuclear systems. Phys. Rep. 261(3-4) (1995) 125. https://doi.org/10.1016/0370-1573(95)00012-6

8. J.B. McGrory, B.H. Wildenthal, E.C. Halbert. Shell-Model Structure of 42-50Ca. Phys. Rev. C 2 (1970) 186. https://doi.org/10.1103/PhysRevC.2.186

9. W.A. Richter et al. New effective interactions for the 0f1p shell. Nucl. Phys. A 523(2) (1991) 325. https://doi.org/10.1016/0375-9474(91)90007-S

10. A. Poves, A. Zuker. Theoretical spectroscopy and the fp shell. Phys. Rep. 70(4) (1981) 235. https://doi.org/10.1016/0370-1573(81)90153-8

11. A.H. Ali, S.O. Hassoon, H. Tafash. Calculations of Quadrupole Deformation Parameters for Nuclei in fp shell. J. Phys.: Conf. Ser. 1178 (2019) 012010. https://doi.org/10.1088/1742-6596/1178/1/012010

12. A. Novoselsky, M. Vallières, O. La’adan. Full f-p Shell Calculation of 51Ca and 51Sc. Phys. Rev. Lett. 79 (1997) 4341. https://doi.org/10.1103/PhysRevLett.79.4341

13. B.A. Brown, W.D.M. Rae. The Shell-Model Code NuShellX@MSU. Nucl. Data Sheets 120 (2014) 115. https://doi.org/10.1016/j.nds.2014.07.022

14. A.H. Ali. Study of the Electric Quadrupole Moments for some Scandium Isotopes Using Shell Model Calculations with Different Interactions. Baghdad Sci. J. 15(3) (2018) 0304. https://doi.org/10.21123/bsj.2018.15.3.0304

15. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. II: Nuclear Deformations (New York, Benjamin, (1975). https://doi.org/10.1142/3530

16. R.A. Radhi, A.H. Ali. Microscopic calculations of effective charges and quadrupole transition rates in Si, S and Ar isotopes. Iraqi J. Sci. 57(3B) (2016) 1999. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6908

17. S. Raman, C.W. Nestor (Jr.), P. Tikkanen. Transition probability from the ground to the first-excited 2+ state of even-even nuclides. Atom. Data Nucl. Data 78(1) (2001) 1. https://doi.org/10.1006/adnd.2001.0858

18. J. Margraf et al. Deformation dependence of low lying M1 strengths in even Nd isotopes. Phys. Rev. C 47 (1993) 1474. https://doi.org/10.1103/PhysRevC.47.1474

19. C.J. Van Der Poel et al. High-spin states in 34Cl. Nucl. Phys. A 373(1) (1982) 81. https://doi.org/10.1016/0375-9474(82)90182-8

20. B. Pritychenko et al. Tables of E2 transition probabilities from the first 2+ states in even-even nuclei. Atom. Data Nucl. Data Tables 107 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.001

21. W.A. Richter, S. Mkhize, B.A. Brown. sd-shell observables for the USDA and USDB Hamiltonians. Phys. Rev. C 78(6) (2008) 064302. https://doi.org/10.1103/PhysRevC.78.064302