ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Isoscalar monopole response in the neutron-rich molybdenum isotopes using self-consistent QRPA
A. H. Taqi*, G. A. Mohammed
Department of Physics, College of Science, Kirkuk University, Kirkuk, Iraq
*Corresponding author. E-mail address:
alitaqi@uokirkuk.edu.iq
Abstract: The isoscalar giant monopole resonance (ISGMR) of even molybdenum isotopes 92,94,96,98,100Mo has been studied within the Skyrme self-consistent Hartree - Fock - Bardeen, Cooper, and Schrieffer and quasi-particle random phase approximation. Ten sets of Skyrme-type interactions of different values of the nuclear matter incompressibility coefficient KNM are used in the calculations. The calculated strength distributions, centroid energies Ecen, scaled energies Es and constrained energies Econ of ISGMR are compared with available experimental data. Due to the appropriate value of the nuclear matter incompressibility KNM, several types of Skyrme interactions were successful in describing the ISGMR strength distribution in the 92,94,96,98,100Mo isotopes. As a result, high correlations between Ecen and KNM were found.
Keywords: strength distribution, Skyrme force, Hartree - Fock - Bardeen - Cooper - Schrieffer, quasiparticle random phase approximation.
References:1. N.V. Giai. Self-Consistent Description of Nuclear Excitations. Prog. Theor. Phys. Supp. 74-75 (1983) 330. https://doi.org/10.1143/PTPS.74.330
2. E. Khan, N.V. Giai. Low-lying 2+ states in neutron-rich oxygen isotopes in quasiparticle random phase approximation. Phys. Lett. B 472 (2000) 253. https://doi.org/10.1016/S0370-2693(99)01437-9
3. E. Khan et al. Low-lying collective states in neutron-rich oxygen isotopes via proton scattering. Phys. Lett. B 490 (2000) 45. https://doi.org/10.1016/S0370-2693(00)00983-7
4. E. Khan et al. Proton scattering from the unstable nuclei 30S and 34Ar: structural evolution along the sulfur and argon isotopic chains. Nucl. Phys. A 694 (2001) 103. https://doi.org/10.1016/S0375-9474(01)00981-2
5. J. Dobaczewski et al. Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. Phys. Rev. C 53 (1996) 2809. https://doi.org/10.1103/PhysRevC.53.2809
6. J. Engel et al. β decay rates of r-process waiting-point nuclei in a self-consistent approach. Phys. Rev. C 60 (1999) 014302. https://doi.org/10.1103/PhysRevC.60.014302
7. M. Matsuo. Continuum Linear Response in Coordinate Space Hartree-Fock-Bogoliubov Formalism for Collective Excitations in Drip-line Nuclei. Nucl. Phys. A 696 (2001) 371. https://doi.org/10.1016/S0375-9474(01)01133-2
8. E. Khan et al. Detecting bubbles in exotic nuclei. Nucl. Phys. A 800 (2008) 37. https://doi.org/10.1016/j.nuclphysa.2007.11.012
9. O. Sorlin, M.-G. Porquet. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61 (2008) 602. https://doi.org/10.1016/j.ppnp.2008.05.001
10. Wafaa A. Mansour, Ali H. Taqi. Isoscalar Giant Dipole Resonance of Tin Isotopes 112, 114, 116, 118, 120, 122, 124Sn Using HF-BCS and QRPA Approximations. Kirkuk J. Sci. 18(4) (2023) 42. https://kujss.uokirkuk.edu.iq/article_181623.html
11. T. Li et al. Isotopic dependence of the giant monopole resonance in the even-A 112-124Sn isotopes and the asymmetry term in nuclear incompressibility. Phys. Rev. Lett. 99 (2007) 162503. https://doi.org/10.1103/PhysRevLett.99.162503
12. C. Monrozeau et al. First Measurement of the Giant Monopole and Quadrupole Resonances in a Short-Lived Nucleus: 56Ni. Phys. Rev. Lett. 100 (2008) 042501. https://doi.org/10.1103/PhysRevLett.100.042501
13. T. Li et al. Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility. Phys. Rev. C 81 (2010) 034309. https://doi.org/10.1103/PhysRevC.81.034309
14. D. Patel et al. Giant monopole resonance in even-A Cd isotopes, the asymmetry term in nuclear incompressibility, and the "softness" of Sn and Cd nuclei. Phys. Lett. B 718 (2012) 447. https://doi.org/10.1016/j.physletb.2012.10.056
15. J. Piekarewicz. Why is the equation of state for tin so soft? Phys. Rev. C 76 (2007) 031301(R). https://doi.org/10.1103/PhysRevC.76.031301
16. J. Li, G. Colò, J. Meng. Microscopic linear response calculations based on the Skyrme functional plus the pairing contribution. Phys. Rev. C 78 (2008) 064304. https://doi.org/10.1103/PhysRevC.78.064304
17. E. Khan. Role of superfluidity in nuclear incompressibilities. Phys. Rev. C 80 (2009) 011307(R). https://doi.org/10.1103/PhysRevC.80.011307
18. P. Veselý et al. Giant monopole resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions. Phys. Rev. C 86 (2012) 024303. https://doi.org/10.1103/PhysRevC.86.024303
19. E. Khan, J. Margueron, I. Vidana, Constraining the Nuclear Equation of State at Subsaturation Densities. Phys. Rev. Lett. 109 (2012) 092501. https://doi.org/10.1103/PhysRevLett.109.092501
20. L.-G. Cao, H. Sagawa, G. Colò. Microscopic study of the isoscalar giant monopole resonance in Cd, Sn, and Pb isotopes. Phys. Rev. C 86 (2012) 054313. https://doi.org/10.1103/PhysRevC.86.054313
21. L. Capelli, G. Colò, J. Li. Dielectric theorem within the Hartree-Fock-Bogoliubov framework. Phys. Rev. C 79 (2009) 054329. https://doi.org/10.1103/PhysRevC.79.054329
22. E. Khan, N. Paar, D. Vretenar. Low-energy monopole strength in exotic nickel isotopes. Phys. Rev. C 84 (2011) 051301(R). https://doi.org/10.1103/PhysRevC.84.051301
23. E. Khan et al. Incompressibility of finite fermionic systems: Stable and exotic atomic nuclei. Phys. Rev. C 87 (2013) 064311. https://doi.org/10.1103/PhysRevC.87.064311
24. E. Yüksel, E. Khan, K. Bozkurt. The soft Giant Monopole Resonance as a probe of the spin-orbit splitting. Eur. Phys. J. A 49 (2013) 124. https://doi.org/10.1140/epja/i2013-13124-6
25. J.P. Blaizot. Nuclear compressibilities. Phys. Rep. 64 (1980) 171. https://doi.org/10.1016/0370-1573(80)90001-0
26. J.P. Blaizot et al. Microscopic and macroscopic determinations of nuclear compressibility. Nucl. Phys. A 591 (1995) 435. https://doi.org/10.1016/0375-9474(95)00294-B
27. Gullala A. Mohammed, Ali H. Taqi. Isoscalar Dipole Response in 92Mo and 100Mo Isotopes". Momento Revista de Fisica 67 (2023) 101. https://doi.org./10.15446/mo.n67.107907
28. S. Shlomo, V.M. Kolomietz, G. Colo. Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30 (2006) 23. https://doi.org/10.1007/978-3-540-46496-9_3
29. D.H. Youngblood, H.L. Clark, Y.-W. Lui. Incompressibility of Nuclear Matter from the Giant Monopole Resonance. Phys. Rev. Lett. 82 (1999) 691. https://doi.org/10.1103/PhysRevLett.82.691
30. S. Shlomo, D.H. Youngblood. Nuclear matter compressibility from isoscalar giant monopole resonance. Phys. Rev. C 47 (1993) 529. https://doi.org/10.1103/PhysRevC.47.529
31. S.H. Amin, A.A. Al-Rubaiee, A.H. Taqi. Effect of Incompressibility and Symmetry Energy Density on Charge Distribution and Radii of Closed-Shell Nuclei. Kirkuk Journal of Science 17(3) (2022) 17. https://doi.org/10.32894/kujss.2022.135889.1073
32. D.R. Lide (Ed.). CRC Handbook of Chemistry and Physics. 87th ed. (CRC Press, 2006) 2608 p. https://doi.org/10.1021/ja069813z
33. A. Moalem et al. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei. Phys. Rev. C 20 (1979) 1593(R). https://doi.org/10.1103/PhysRevC.20.1593
34. G. Duhamel et al. Inelastic alpha scattering to the giant quadrupole and monopole resonances of 58Ni, 92Mo, and 120Sn at 152 MeV. Phys. Rev. C 38 (1988) 2509. https://doi.org/10.1103/PhysRevC.38.2509
35. D.H. Youngblood et al. Unexpected characteristics of the isoscalar monopole resonance in the A ≈ 90 region: Implications for nuclear incompressibility. Phys. Rev. C 88 (2013) 021301(R). https://doi.org/10.1103/PhysRevC.88.021301
36. D.H. Youngblood et al. Isoscalar E0, E1, E2, and E3 strength in 92,96,98,100Mo. Phys. Rev. C 92 (2015) 014318. https://doi.org/10.1103/PhysRevC.92.014318
37. Krishichayan et al. Isoscalar giant resonances in 90,92,94Zr. Phys. Rev. C 92 (2015) 044323. https://doi.org/10.1103/PhysRevC.92.044323
38. K.B. Howard et al. Compressional-mode resonances in the molybdenum isotopes: Emergence of softness in open-shell nuclei near A = 90. Phys. Lett. B 807 (2020) 135608. https://doi.org/10.1016/j.physletb.2020.135608
39. G. Colò et al. Isoscalar monopole and quadrupole modes in Mo isotopes: Microscopic analysis. Phys. Lett. B 811 (2020) 135940. https://doi.org/10.1016/j.physletb.2020.135940
40. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. (Ref. is the same as 27) https://doi.org/10.1103/PhysRevC.72.014310
41. Z. Zhfng, L.-W. Chen. Extended Skyrme interactions for nuclear matter, finite nuclei, and neutron stars. Phys. Rev. C 94 (2016) 064326. https://doi.org/10.1103/PhysRevC.94.064326
42. B.A. Brown. New Skyrme interaction for normal and exotic nuclei. Phys. Rev. C 58 (1998) 220. https://doi.org/10.1103/PhysRevC.58.220
43. Q. Shen, Y. Han, H. Guo. Isospin dependent nucleon nucleus optical potential with Skyrme interactions. Phys. Rev. C 80 (2009) 024604. https://doi.org/10.1103/PhysRevC.80.024604
44. J.M. Pearson, S. Goriely. Isovector effective mass in the Skyrme-Hartree-Fock method. Phys. Rev. C 64 (2001) 027301. https://doi.org/10.1103/PhysRevC.64.027301
45. P.-G. Reinhard et al. Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60 (1999) 014316. https://doi.org/10.1103/PhysRevC.60.014316
46. B.A. Brown et al. Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 76 (2007) 034305. https://doi.org/10.1103/PhysRevC.76.034305
47. H.S. Köhler. Skyrme force and the mass formula. Nucl. Phys. A 258 (1976) 301. https://doi.org/10.1016/0375-9474(76)90008-7
48. S. Krewald et al. On the use of Skyrme force in self-consistent RPA calculations. Nucl. Phys. A 281 (1977) 166. https://doi.org/10.1016/0375-9474(77)90019-7
49. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1958-1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6
50. A.H. Taqi, M.S. Ali. Self-consistent Hartree-Fock RPA calculations in 208Pb. Indian J. Phys. 92(1) (2018) 69. https://doi.org/10.1007/s12648-017-1073-4
51. J.R. Stone, P.-G. Reinhard. The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys. 58(2) (2007) 587. https://doi.org/10.1016/j.ppnp.2006.07.001
52. D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme’s interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626
53. M. Bender, P.-H. Heenen, P.-G. Reinhard. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75 (2003) 121. https://doi.org/10.1103/RevModPhys.75.121
54. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Heidelberg, Springer Berlin, 1980) 718 p. https://doi.org/10.1007/978-3-642-61852-9
55. E. Chabanat et al. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8
56. W. Ryssens et al. Solution of the Skyrme-HF+BCS equation on a 3D mesh, II: A new version of the Ev8 code. Computer Physics Communications 187 (2015) 175. https://doi.org/10.1016/j.cpc.2014.10.001
57. D.J. Rowe. Nuclear Collective Motion: Models and Theory (London, Methuen, 1970) 340 p. Google books
58. G. Colò et al. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program. Computer Physics Communications 184 (2013) 142. https://doi.org/10.1016/j.cpc.2012.07.016
59. A.H. Taqi, G.L. Alawi. Isoscalar giant resonance in 100,116,132Sn isotopes using Skyrme HF-RPA. Nucl. Phys. A 983 (2019) 103. https://doi.org/10.1016/j.nuclphysa.2019.01.001
60. A.H. Taqi, E.G. Khidher. Ground and transition properties of 40Ca and 48Ca nuclei. Nucl. Phys. At. Energy 19 (2018) 326. https://doi.org/10.15407/jnpae2018.04.326
61. S. Stringari. Sum rules for compression modes. Phys. Lett. B 108 (1982) 232. https://doi.org/10.1016/0370-2693(82)91182-0
62. J. Button et al. Isoscalar E0, E1, E2, and E3 strength in 94Mo. Phys. Rev. C 94 (2016) 034315. https://doi.org/10.1103/PhysRevC.94.034315
63. M. Itoh et al. Systematic study of L ≤ 3 giant resonances in Sm isotopes via multipole decomposition analysis. Phys. Rev. C 68 (2003) 064602. https://doi.org/10.1103/PhysRevC.68.064602
64. U. Garg et al. Splitting of the giant monopole resonance with deformation in Sm nuclei. Phys. Rev. Lett. 45 (1980) 1670. https://doi.org/10.1103/PhysRevLett.45.1670
65. S. Brandenburg et al. Fission decay of the isoscalar giant monopole resonance in 238U. Phys. Rev. Lett. 49 (1982) 1687. https://doi.org/10.1103/PhysRevLett.49.1687
66. Y.K. Gupta et al. Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation. Phys. Lett. B 748 (2015) 343. https://doi.org/10.1016/j.physletb.2015.07.021
67. Y.K. Gupta et al. Deformation effects on isoscalar giant resonances in 24Mg. Phys. Rev. C 93 (2016) 044324. https://doi.org/10.1103/PhysRevC.93.044324
68. T. Peach et al. Effect of ground-state deformation on isoscalar giant resonances in 28Si. Phys. Rev. C 93 (2016) 064325. https://doi.org/10.1103/PhysRevC.93.064325
69. Y.K. Gupta et al. Isoscalar giant monopole, dipole, and quadrupole resonances in 90,92Zr and 92Mo. Phys. Rev. C 97 (2018) 064323. https://doi.org/10.1103/PhysRevC.97.064323
70. Y.K. Gupta et al. Are there nuclear structure effects on the isoscalar giant monopole resonance and nuclear incompressibility near A ∼ 90? Phys. Lett. B 760 (2016) 482. https://doi.org/10.1016/j.physletb.2016.07.021
71. M.N. Harakeh, A. van der Woude. Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, New York, 2001) 638 p. (Ref. is the same as 10) https://doi.org/10.1093/oso/9780198517337.001.0001
72. B.K. Jennings, A.D. Jackson. Sum rules and the breathing mode. Nucl. Phys. A 342 (1980) 23. https://doi.org/10.1016/0375-9474(80)90504-7