Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 4, pages 306-315.
Section: Nuclear Physics.
Received: 05.05.2023; Accepted: 22.11.2023; Published online: 28.12.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.04.306

Isoscalar monopole response in the neutron-rich molybdenum isotopes using self-consistent QRPA

A. H. Taqi*, G. A. Mohammed

Department of Physics, College of Science, Kirkuk University, Kirkuk, Iraq

*Corresponding author. E-mail address: alitaqi@uokirkuk.edu.iq

Abstract: The isoscalar giant monopole resonance (ISGMR) of even molybdenum isotopes 92,94,96,98,100Mo has been studied within the Skyrme self-consistent Hartree - Fock - Bardeen, Cooper, and Schrieffer and quasi-particle random phase approximation. Ten sets of Skyrme-type interactions of different values of the nuclear matter incompressibility coefficient KNM are used in the calculations. The calculated strength distributions, centroid energies Ecen, scaled energies Es and constrained energies Econ of ISGMR are compared with available experimental data. Due to the appropriate value of the nuclear matter incompressibility KNM, several types of Skyrme interactions were successful in describing the ISGMR strength distribution in the 92,94,96,98,100Mo isotopes. As a result, high correlations between Ecen and KNM were found.

Keywords: strength distribution, Skyrme force, Hartree - Fock - Bardeen - Cooper - Schrieffer, quasiparticle random phase approximation.

References:

1. N.V. Giai. Self-Consistent Description of Nuclear Excitations. Prog. Theor. Phys. Supp. 74-75 (1983) 330. https://doi.org/10.1143/PTPS.74.330

2. E. Khan, N.V. Giai. Low-lying 2+ states in neutron-rich oxygen isotopes in quasiparticle random phase approximation. Phys. Lett. B 472 (2000) 253. https://doi.org/10.1016/S0370-2693(99)01437-9

3. E. Khan et al. Low-lying collective states in neutron-rich oxygen isotopes via proton scattering. Phys. Lett. B 490 (2000) 45. https://doi.org/10.1016/S0370-2693(00)00983-7

4. E. Khan et al. Proton scattering from the unstable nuclei 30S and 34Ar: structural evolution along the sulfur and argon isotopic chains. Nucl. Phys. A 694 (2001) 103. https://doi.org/10.1016/S0375-9474(01)00981-2

5. J. Dobaczewski et al. Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. Phys. Rev. C 53 (1996) 2809. https://doi.org/10.1103/PhysRevC.53.2809

6. J. Engel et al. β decay rates of r-process waiting-point nuclei in a self-consistent approach. Phys. Rev. C 60 (1999) 014302. https://doi.org/10.1103/PhysRevC.60.014302

7. M. Matsuo. Continuum Linear Response in Coordinate Space Hartree-Fock-Bogoliubov Formalism for Collective Excitations in Drip-line Nuclei. Nucl. Phys. A 696 (2001) 371. https://doi.org/10.1016/S0375-9474(01)01133-2

8. E. Khan et al. Detecting bubbles in exotic nuclei. Nucl. Phys. A 800 (2008) 37. https://doi.org/10.1016/j.nuclphysa.2007.11.012

9. O. Sorlin, M.-G. Porquet. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61 (2008) 602. https://doi.org/10.1016/j.ppnp.2008.05.001

10. Wafaa A. Mansour, Ali H. Taqi. Isoscalar Giant Dipole Resonance of Tin Isotopes 112, 114, 116, 118, 120, 122, 124Sn Using HF-BCS and QRPA Approximations. Kirkuk J. Sci. 18(4) (2023) 42. https://kujss.uokirkuk.edu.iq/article_181623.html

11. T. Li et al. Isotopic dependence of the giant monopole resonance in the even-A 112-124Sn isotopes and the asymmetry term in nuclear incompressibility. Phys. Rev. Lett. 99 (2007) 162503. https://doi.org/10.1103/PhysRevLett.99.162503

12. C. Monrozeau et al. First Measurement of the Giant Monopole and Quadrupole Resonances in a Short-Lived Nucleus: 56Ni. Phys. Rev. Lett. 100 (2008) 042501. https://doi.org/10.1103/PhysRevLett.100.042501

13. T. Li et al. Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility. Phys. Rev. C 81 (2010) 034309. https://doi.org/10.1103/PhysRevC.81.034309

14. D. Patel et al. Giant monopole resonance in even-A Cd isotopes, the asymmetry term in nuclear incompressibility, and the "softness" of Sn and Cd nuclei. Phys. Lett. B 718 (2012) 447. https://doi.org/10.1016/j.physletb.2012.10.056

15. J. Piekarewicz. Why is the equation of state for tin so soft? Phys. Rev. C 76 (2007) 031301(R). https://doi.org/10.1103/PhysRevC.76.031301

16. J. Li, G. Colò, J. Meng. Microscopic linear response calculations based on the Skyrme functional plus the pairing contribution. Phys. Rev. C 78 (2008) 064304. https://doi.org/10.1103/PhysRevC.78.064304

17. E. Khan. Role of superfluidity in nuclear incompressibilities. Phys. Rev. C 80 (2009) 011307(R). https://doi.org/10.1103/PhysRevC.80.011307

18. P. Veselý et al. Giant monopole resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions. Phys. Rev. C 86 (2012) 024303. https://doi.org/10.1103/PhysRevC.86.024303

19. E. Khan, J. Margueron, I. Vidana, Constraining the Nuclear Equation of State at Subsaturation Densities. Phys. Rev. Lett. 109 (2012) 092501. https://doi.org/10.1103/PhysRevLett.109.092501

20. L.-G. Cao, H. Sagawa, G. Colò. Microscopic study of the isoscalar giant monopole resonance in Cd, Sn, and Pb isotopes. Phys. Rev. C 86 (2012) 054313. https://doi.org/10.1103/PhysRevC.86.054313

21. L. Capelli, G. Colò, J. Li. Dielectric theorem within the Hartree-Fock-Bogoliubov framework. Phys. Rev. C 79 (2009) 054329. https://doi.org/10.1103/PhysRevC.79.054329

22. E. Khan, N. Paar, D. Vretenar. Low-energy monopole strength in exotic nickel isotopes. Phys. Rev. C 84 (2011) 051301(R). https://doi.org/10.1103/PhysRevC.84.051301

23. E. Khan et al. Incompressibility of finite fermionic systems: Stable and exotic atomic nuclei. Phys. Rev. C 87 (2013) 064311. https://doi.org/10.1103/PhysRevC.87.064311

24. E. Yüksel, E. Khan, K. Bozkurt. The soft Giant Monopole Resonance as a probe of the spin-orbit splitting. Eur. Phys. J. A 49 (2013) 124. https://doi.org/10.1140/epja/i2013-13124-6

25. J.P. Blaizot. Nuclear compressibilities. Phys. Rep. 64 (1980) 171. https://doi.org/10.1016/0370-1573(80)90001-0

26. J.P. Blaizot et al. Microscopic and macroscopic determinations of nuclear compressibility. Nucl. Phys. A 591 (1995) 435. https://doi.org/10.1016/0375-9474(95)00294-B

27. Gullala A. Mohammed, Ali H. Taqi. Isoscalar Dipole Response in 92Mo and 100Mo Isotopes". Momento Revista de Fisica 67 (2023) 101. https://doi.org./10.15446/mo.n67.107907

28. S. Shlomo, V.M. Kolomietz, G. Colo. Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30 (2006) 23. https://doi.org/10.1007/978-3-540-46496-9_3

29. D.H. Youngblood, H.L. Clark, Y.-W. Lui. Incompressibility of Nuclear Matter from the Giant Monopole Resonance. Phys. Rev. Lett. 82 (1999) 691. https://doi.org/10.1103/PhysRevLett.82.691

30. S. Shlomo, D.H. Youngblood. Nuclear matter compressibility from isoscalar giant monopole resonance. Phys. Rev. C 47 (1993) 529. https://doi.org/10.1103/PhysRevC.47.529

31. S.H. Amin, A.A. Al-Rubaiee, A.H. Taqi. Effect of Incompressibility and Symmetry Energy Density on Charge Distribution and Radii of Closed-Shell Nuclei. Kirkuk Journal of Science 17(3) (2022) 17. https://doi.org/10.32894/kujss.2022.135889.1073

32. D.R. Lide (Ed.). CRC Handbook of Chemistry and Physics. 87th ed. (CRC Press, 2006) 2608 p. https://doi.org/10.1021/ja069813z

33. A. Moalem et al. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei. Phys. Rev. C 20 (1979) 1593(R). https://doi.org/10.1103/PhysRevC.20.1593

34. G. Duhamel et al. Inelastic alpha scattering to the giant quadrupole and monopole resonances of 58Ni, 92Mo, and 120Sn at 152 MeV. Phys. Rev. C 38 (1988) 2509. https://doi.org/10.1103/PhysRevC.38.2509

35. D.H. Youngblood et al. Unexpected characteristics of the isoscalar monopole resonance in the A ≈ 90 region: Implications for nuclear incompressibility. Phys. Rev. C 88 (2013) 021301(R). https://doi.org/10.1103/PhysRevC.88.021301

36. D.H. Youngblood et al. Isoscalar E0, E1, E2, and E3 strength in 92,96,98,100Mo. Phys. Rev. C 92 (2015) 014318. https://doi.org/10.1103/PhysRevC.92.014318

37. Krishichayan et al. Isoscalar giant resonances in 90,92,94Zr. Phys. Rev. C 92 (2015) 044323. https://doi.org/10.1103/PhysRevC.92.044323

38. K.B. Howard et al. Compressional-mode resonances in the molybdenum isotopes: Emergence of softness in open-shell nuclei near A = 90. Phys. Lett. B 807 (2020) 135608. https://doi.org/10.1016/j.physletb.2020.135608

39. G. Colò et al. Isoscalar monopole and quadrupole modes in Mo isotopes: Microscopic analysis. Phys. Lett. B 811 (2020) 135940. https://doi.org/10.1016/j.physletb.2020.135940

40. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. (Ref. is the same as 27) https://doi.org/10.1103/PhysRevC.72.014310

41. Z. Zhfng, L.-W. Chen. Extended Skyrme interactions for nuclear matter, finite nuclei, and neutron stars. Phys. Rev. C 94 (2016) 064326. https://doi.org/10.1103/PhysRevC.94.064326

42. B.A. Brown. New Skyrme interaction for normal and exotic nuclei. Phys. Rev. C 58 (1998) 220. https://doi.org/10.1103/PhysRevC.58.220

43. Q. Shen, Y. Han, H. Guo. Isospin dependent nucleon nucleus optical potential with Skyrme interactions. Phys. Rev. C 80 (2009) 024604. https://doi.org/10.1103/PhysRevC.80.024604

44. J.M. Pearson, S. Goriely. Isovector effective mass in the Skyrme-Hartree-Fock method. Phys. Rev. C 64 (2001) 027301. https://doi.org/10.1103/PhysRevC.64.027301

45. P.-G. Reinhard et al. Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60 (1999) 014316. https://doi.org/10.1103/PhysRevC.60.014316

46. B.A. Brown et al. Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 76 (2007) 034305. https://doi.org/10.1103/PhysRevC.76.034305

47. H.S. Köhler. Skyrme force and the mass formula. Nucl. Phys. A 258 (1976) 301. https://doi.org/10.1016/0375-9474(76)90008-7

48. S. Krewald et al. On the use of Skyrme force in self-consistent RPA calculations. Nucl. Phys. A 281 (1977) 166. https://doi.org/10.1016/0375-9474(77)90019-7

49. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1958-1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6

50. A.H. Taqi, M.S. Ali. Self-consistent Hartree-Fock RPA calculations in 208Pb. Indian J. Phys. 92(1) (2018) 69. https://doi.org/10.1007/s12648-017-1073-4

51. J.R. Stone, P.-G. Reinhard. The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys. 58(2) (2007) 587. https://doi.org/10.1016/j.ppnp.2006.07.001

52. D. Vautherin, D.M. Brink. Hartree-Fock calculations with Skyrme’s interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

53. M. Bender, P.-H. Heenen, P.-G. Reinhard. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75 (2003) 121. https://doi.org/10.1103/RevModPhys.75.121

54. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Heidelberg, Springer Berlin, 1980) 718 p. https://doi.org/10.1007/978-3-642-61852-9

55. E. Chabanat et al. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 635 (1998) 231. https://doi.org/10.1016/S0375-9474(98)00180-8

56. W. Ryssens et al. Solution of the Skyrme-HF+BCS equation on a 3D mesh, II: A new version of the Ev8 code. Computer Physics Communications 187 (2015) 175. https://doi.org/10.1016/j.cpc.2014.10.001

57. D.J. Rowe. Nuclear Collective Motion: Models and Theory (London, Methuen, 1970) 340 p. Google books

58. G. Colò et al. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program. Computer Physics Communications 184 (2013) 142. https://doi.org/10.1016/j.cpc.2012.07.016

59. A.H. Taqi, G.L. Alawi. Isoscalar giant resonance in 100,116,132Sn isotopes using Skyrme HF-RPA. Nucl. Phys. A 983 (2019) 103. https://doi.org/10.1016/j.nuclphysa.2019.01.001

60. A.H. Taqi, E.G. Khidher. Ground and transition properties of 40Ca and 48Ca nuclei. Nucl. Phys. At. Energy 19 (2018) 326. https://doi.org/10.15407/jnpae2018.04.326

61. S. Stringari. Sum rules for compression modes. Phys. Lett. B 108 (1982) 232. https://doi.org/10.1016/0370-2693(82)91182-0

62. J. Button et al. Isoscalar E0, E1, E2, and E3 strength in 94Mo. Phys. Rev. C 94 (2016) 034315. https://doi.org/10.1103/PhysRevC.94.034315

63. M. Itoh et al. Systematic study of L ≤ 3 giant resonances in Sm isotopes via multipole decomposition analysis. Phys. Rev. C 68 (2003) 064602. https://doi.org/10.1103/PhysRevC.68.064602

64. U. Garg et al. Splitting of the giant monopole resonance with deformation in Sm nuclei. Phys. Rev. Lett. 45 (1980) 1670. https://doi.org/10.1103/PhysRevLett.45.1670

65. S. Brandenburg et al. Fission decay of the isoscalar giant monopole resonance in 238U. Phys. Rev. Lett. 49 (1982) 1687. https://doi.org/10.1103/PhysRevLett.49.1687

66. Y.K. Gupta et al. Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation. Phys. Lett. B 748 (2015) 343. https://doi.org/10.1016/j.physletb.2015.07.021

67. Y.K. Gupta et al. Deformation effects on isoscalar giant resonances in 24Mg. Phys. Rev. C 93 (2016) 044324. https://doi.org/10.1103/PhysRevC.93.044324

68. T. Peach et al. Effect of ground-state deformation on isoscalar giant resonances in 28Si. Phys. Rev. C 93 (2016) 064325. https://doi.org/10.1103/PhysRevC.93.064325

69. Y.K. Gupta et al. Isoscalar giant monopole, dipole, and quadrupole resonances in 90,92Zr and 92Mo. Phys. Rev. C 97 (2018) 064323. https://doi.org/10.1103/PhysRevC.97.064323

70. Y.K. Gupta et al. Are there nuclear structure effects on the isoscalar giant monopole resonance and nuclear incompressibility near A ∼ 90? Phys. Lett. B 760 (2016) 482. https://doi.org/10.1016/j.physletb.2016.07.021

71. M.N. Harakeh, A. van der Woude. Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, New York, 2001) 638 p. (Ref. is the same as 10) https://doi.org/10.1093/oso/9780198517337.001.0001

72. B.K. Jennings, A.D. Jackson. Sum rules and the breathing mode. Nucl. Phys. A 342 (1980) 23. https://doi.org/10.1016/0375-9474(80)90504-7