Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 3, pages 256-266.
Section: Radiobiology and Radioecology.
Received: 27.02.2023; Accepted: 09.05.2023; Published online: 20.09.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.03.256

Current 137Cs accumulation by mushrooms in different site types of scots pine forests of Ukrainian Polissia

O. O. Orlov1,2,*, O. V. Zhukovskyi2, T. V. Kurbet2,3, V. V. Shevchuk2, S. V. Sukhovetska3

1 State Institution "Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine", Kyiv, Ukraine
2 Poliskyi Branch of Ukrainian Research Institute of Forestry and Forest Melioration named after G. M. Vysotsky, vil. Dovzhyk, Zhytomyr region, Ukraine
3 State University "Zhytomyr Polytechnic", Zhytomyr, Ukraine


*Corresponding author. E-mail address: orlov.botany@gmail.com

Abstract: The study of 137Cs radioactive contamination of fruiting bodies of mushrooms was carried out in September - October 2022 in 18 sampling sites laid out in the Korosten district of Zhytomyr region in 3 of the most widespread forest site types (FST): fresh infertile pine site type (À2), fresh fairly infertile pine site type (Â2) and moist fairly infertile pine site type (Â3). It was found that the highest levels of 137Cs content in investigated FST were characteristic of symbiotrophic mushroom species - Ñortinarius mucosus, Ñortinarius caperatus, Sarcodon imbricatus, Imleria badia, Tricholoma equestre, Paxillus involutus, Hygrophorus hypothejus, and the lowest - for xylotrophes-saprotrophes such as Armillaria mellea and Tapinella atrotomentosa. When analyzed, it was shown that interspecific differences of average values of 137Cs aggregated transfer coefficient (Tag) among mushrooms in each FST varied in a wide range: they reached 1.1⋅103 times in FST-A2 - from 435 in Cortinarius mucosus to 0.4 m2⋅kg-1⋅10-3 in Armillaria mellea; 71.4 times - in FST-B2 - from 162 in Sarcodon imbricatus to 2.3 m2⋅kg-1⋅10-3 in Armillaria mellea; and 12 times - in FST-B3 - from 111 in Imleria badia to 9.2 m2⋅kg-1⋅10-3 in Leccinum scabrum. Also, it was shown that in genus Russula even in the same FST-B2 among five studied species a 24-fold change in average values of 137Cs Tag are observed - from 67 in Russula vinosa to 2.8 m2⋅kg-1⋅10-3 in Russula aeruginea. The results of ANOVA were discussed as well as the essentiality of the difference of the average values of Tag in mushroom species in different FST.

Keywords: pine stand, 137Cs activity concentration, density of contamination, 137Cs aggregated transfer coefficient, permissible levels.

References:

1. L. Betti et al. 137Caesium in samples of wild-grown Boletus edulis Bull. from Lucca province (Tuscany, Italy) and other Italian and European geographical areas. Food Additives & Contaminants: Part A 34 (2017) 49. https://doi.org/10.1080/19440049.2016.1256502

2. O. Harkut, P. Alexa, R. Uhlář. Radiocaesium contamination of mushrooms at high- and low-level Chernobyl exposure sites and its consequences for public health. Life 11(12) (2021) 1370. https://doi.org/10.3390/life11121370

3. P. Dvořák et al. 137Cs activity concentration in mushrooms from the Bobrůvka river valley. Potravinarstvo Slovak Journal of Food Sciences 14 (2020) 254. https://doi.org/10.5219/1245

4. J. Falandysz et al. An evaluation of the occurrence and trends in 137Cs and 40K radioactivity in King Bolete Boletus edulis mushrooms in Poland during 1995 - 2019. Environmental Science and Pollution Research 28 (2021) 32405. https://doi.org/10.1007/s11356-021-12433-8

5. T. Zalewska, L. Cocchi, J. Falandysz. Radiocaesium in Cortinarius spp. mushrooms in the regions of the Reggio Emilia in Italy and Pomerania in Poland. Environmental Science and Pollution Research 23 (2016) 23169. https://doi.org/10.1007/s11356-016-7541-0

6. M. Lacheva et al. Activity concentrations of Cs-137, Cs-134, Th-234 and K-40 in wild edible mushrooms gathered 32 years after the Chernobyl power plant accident in Batak Mountain, Bulgaria. Bulgarian Chemical Communications 52 À (2020) 47. http://www.bcc.bas.bg/BCC_Volumes/Volume_52_Special_A_2020/BCC-52-A.pdf

7. A. Pekşen et al. Determination of radioactivity levels in different mushroom species from Turkey. Yüzüncü Yil Üniversitesi Tarim Bilimleri Dergisi 31(1) (2021) 30. https://doi.org/10.29133/yyutbd.797101

8. L. Cui et al. Radiocesium concentrations in mushrooms collected in Kawauchi village five to eight years after the Fukushima Daiichi Nuclear Power Plant accident. PLoS ONE 15(9) (2020) e0239296. https://doi.org/10.1371/journal.pone.0239296

9. M. Komatsu, K. Nishina, S. Hashimoto. Extensive analysis of radiocesium concentrations in wild mushrooms in eastern Japan affected by the Fukushima nuclear accident: Use of open accessible monitoring data. Environmental Pollution 255 (2019) 113236. https://doi.org/10.1016/j.envpol.2019.113236

10. M. Saniewski et al. 90Sr in King Bolete Boletus edulis and certain other mushrooms consumed in Europe and China. Science of the Total Environment 543 (2016) 287. https://doi.org/10.1016/j.scitotenv.2015.11.042

11. Intervention Criteria in a Nuclear or Radiation Emergency. IAEA Safety Series No. 109 (Vienna: IAEA, 1994) 117 p. https://www.iaea.org/publications/5159/intervention-criteria-in-a-nuclear-or-radiation-emergency

12. G.A. Grodzynska. Radionuclide contamination of macromycetes. Visnyk Natsionalnoyi Akademiyi Nauk Ukrayiny (Visnyk of the National Academy of Sciences of Ukraine) 6 (2017) 61. (Ukr) https://doi.org/10.15407/visn2017.06.061

13. V.P. Krasnov, O.O. Orlov, T.V. Kurbet. Radioecology of Edible Macromycetes (Zhytomyr: Volyn, 2006) 220 p. (Rus)

14. I. Tucaković et al. 137Cs in mushrooms from Croatia sampled 15 - 30 years after Chernobyl. Journal of Environmental Radioactivity 181 (2018) 147. https://doi.org/10.1016/j.jenvrad.2017.11.004

15. À. Grodzinskaya et al. Radioactive contamination of wild mushrooms from Ukraine under conditions of contrasting radiation loads: 36 years after the Chernobyl nuclear power plant catastrophe. International Journal of Medicinal Mushrooms 24(9) (2022) 25. https://doi.org/10.1615/IntJMedMushrooms.2022044725

16. M. Orita et al. Activities concentration of radiocesium in wild mushroom collected in Ukraine 30 years after the Chernobyl power plant accident. PeerJ 6 (2018) e4222. https://doi.org/10.7717/peerj.4222

17. N.E. Zarubina et al. Two stages in the accumulation of 137Cs by mushroom Suillus luteus after the Chornobyl accident. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 22(3) (2021) 294. https://doi.org/10.15407/jnpae2021.03.294

18. V.I. Tkachuk. Problems of Cultivation of Scots Pine on Right-Bank Polissia (Zhytomyr: Volyn, 2004) 464 p. (Ukr)

19. Quality of Soil. Methodology of Soil Sampling for Radiation Control. Organization Standard of Ukraine 74.14-37-425:2006 (Êyiv: Ministry of Agrarian Policy of Ukraine, 2006) 11 ð. (Ukr) http://online.budstandart.com/ua/catalog/doc-page?id_doc=58893

20. M. Belli et al. Dynamics of Radionuclides in Semi-Natural Environments. In: I. Linkov, W.R. Schell (Eds.). Contaminated Forests. NATO Science Series. Vol 58 (Dordrecht: Springer, 1999) p. 17. https://doi.org/10.1007/978-94-011-4694-4_2

21. G.F. Lakin. Biometry (Ìoskva: Higher School, 1973) 348 p. (Rus)

22. P.S. Pohrebniak. Fundamentals of Forest Typology (Kyiv: Publishers of Academy of Sciences of Ukrainian SSR, 1955) 452 p. (Rus)

23. J. Braun-Blanquet. Pflanzensoziologie, Grundzüge der Vegetationskunde. 3rd ed. (Berlin: Springer-Verlag, 1964) 631 p. https://doi.org/10.1007/978-3-7091-8110-2

24. R.H. Whittaker et al. Classification of Plant Communities. Handbook of Vegetation Science (HAVS, Vol. 5-1) (Hague: Dr. W. Junk Publishers, 1978) 416 p. https://doi.org/10.1007/978-94-009-9183-5

25. D.V. Dubyna (Ed.). Prodrome of the Vegetation of Ukraine (Kyiv: Naukova Dumka, 2019) 783 ð. (Ukr) http://geobot.org.ua/files/publication/2106/prodr_roslinn_ukr_2019.pdf

26. Index Fungorum (2015). http://www.indexfungorum.org/names/Names.asp

27. The Main Sanitary Rules of Procuring Radiation Security in Ukraine. State Sanitary Rules: 6.177-2005-09-02 (Kyiv: Ministry of Health of Ukraine, 2005) 98 ð. (Ukr) http://online.budstandart.com/ua/catalog/doc-page?id_doc=48197

28. K. Haselwandter, M. Berreck, P. Brunner. Fungi as bioindicators of radiocaesium contamination: pre- and post-Chernobyl activities. Transactions of the British Mycological Society 90 (1988) 171. https://doi.org/10.1016/S0007-1536(88)80085-8

29. M. Strandberg Long-term trends in the uptake of radiocesium in Rozites caperatus. Science of the Total Environment 327 (2004) 315. https://doi.org/10.1016/j.scitotenv.2004.01.022

30. E. Malinovska, P. Szefer, R. Bojanowski. Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chemistry 97(1) (2006) 19. https://doi.org/10.1016/j.foodchem.2005.02.048

31. J.W. Mietelski et al. Radioactive contamination of forests in Poland. Biological Trace Element Research 43-45 (1994) 715. https://doi.org/10.1007/BF02917376

32. J.W. Mietelski et al. Radioactive contamination of Polish mushrooms. Science of the Total Environment 157 (1994) 217. https://doi.org/10.1016/0048-9697(94)90582-7

33. G.A. Grodzynska et al. Macromycetes - bioindicators of radiocaesium contamination of Ukrainian forest ecosystems. Visnyk Natsionalnoyi Akademiyi Nauk Ukrayiny (Visnyk of the National Academy of Sciences of Ukraine) 9 (2008) 26. (Ukr) http://dspace.nbuv.gov.ua/bitstream/handle/123456789/3413/06-statta_4.pdf?sequence=1

34. J. Falandysz et al. Radiocaesium in Tricholoma spp. from the Northern Hemisphere in 1971 - 2016. Science of the Total Environment 802 (2022) 149829. https://doi.org/10.1016/j.scitotenv.2021.149829

35. J. Klán et al. Investigation of non-radioactive Rb, Cs, and radiocaesium in higher fungi. Česká Mykologie 42 (1988) 158. http://www.czechmycology.org/_cm/CM423.pdf#page=32

36. Permissible Content Levels of Radionuclides 137Cs and 90Sr in Foodstuffs and Drinking Water. Hygienic Standard HS 6.6.1.1.-130-2006 (Kyiv: Ministry of Health of Ukraine, 2006) 22 p. (Ukr) http://online.budstandart.com/ua/catalog/doc-page?id_doc=48352

37. P.L. Nimis et al. The effect of microniches in a natural ecosystem on the radiocontamination of vascular plants. In: Transfer of Radionuclides in Natural and Semi-Natural Environments. Eds. G. Desmet et al. (London - New-York: Elsevier Applied Science, 1990) ð. 84. https://www.researchgate.net/publication/235228468_The_effect_of_microniches_in_a_natural_ecosystem_on_the_radiocontamination_of_vascular_plants