Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 3, pages 175-192.
Section: Nuclear Physics.
Received: 27.12.2022; Accepted: 28.07.2023; Published online: 20.09.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.03.175

Nuclear level density in the statistical semiclassical micro-macroscopic approach

A. G. Magner1,2, A. I. Sanzhur1, S. N. Fedotkin1, A. I. Levon1, U. V. Grygoriev1,3, S. Shlomo2,*

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Cyclotron Institute, Texas A&M University, College Station, Texas, USA
3 Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands


*Corresponding author. E-mail address: s-shlomo@tamu.edu

Abstract: Level density ρ is derived for a finite system with strongly interacting nucleons at a given energy E, neutron N, and proton Z particle numbers, projection of the angular momentum M, and other integrals of motion, within the semiclassical periodic-orbit theory (POT) beyond the standard Fermi-gas saddle-point method. For large particle numbers, one obtains an analytical expression for the level density which is extended to low excitation energies U in the statistical micro-macroscopic approach (MMA). The interparticle interaction averaged over particle numbers is taken into account in terms of the extended Thomas - Fermi component of the POT. The shell structure of spherical and deformed nuclei is taken into account in the level density by the Strutinsky shell correction method through the mean-field approach used near the Fermi energy surface. The MMA expressions for the level density ρ reaches the well-known macroscopic Fermi-gas asymptote for large excitation energies U and the finite combinatoric power-expansion limit for low energies U. We compare our MMA results for the averaged level density with the experimental data obtained from the known excitation energy spectra by using the sample method under statistical and plateau conditions. Fitting the MMA ρ to these experimental data on the averaged level density by using only one free physical parameter - inverse level density parameter K - for several nuclei and their long isotope chain at low excitation energies U one obtains the results for K. These values of K might be much larger than those deduced from neutron resonances. The shell, isotopic asymmetry, and pairing effects are significant for low excitation energies.

Keywords: level density, shell structure, periodic-orbit theory.

References:

1. H. Bethe. An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50 (1936) 332. https://doi.org/10.1103/PhysRev.50.332

2. T. Ericson. The statistical model and nuclear level densities. Adv. Phys. 9 (1960) 425. https://doi.org/10.1080/00018736000101239

3. A. Gilbert, A.G.W. Cameron. A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43 (1965) 1446. https://doi.org/10.1139/p65-139

4. A. Bohr, B.R. Mottelson. Nuclear Structure. Vol. 1. (Benjamin, New York, 1969). Google books

5. V.S. Stavinsky. Nuclear level density. Sov. J. Part. Nucl. 3 (1972) 417.

6. A.V. Ignatuyk, G.N. Smirenkin, A.S. Tishin. Phenomenological description of energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21 (1975) 255.

7. L.D. Landau, E.M. Lifshitz. Statistical Physics. Part 1 (Oxford: Pergamon Press, 1980) 544 p. Google books

8. S.K. Kataria, V.S. Ramamurthy, S.S. Kapoor. Semiempirical nuclear level density formula with shell effects. Phys. Rev. C 18 (1978) 549. https://doi.org/10.1103/PhysRevC.18.549

9. A.V. Ignatyuk. Statistical Properties of Excited Atomic Nuclei (Moskva: Energoatomizdat, 1983). (Rus)

10. M.K. Grossjean, H. Feldmeier. Level density of a Fermi gas with pairing interactions. Nucl. Phys. A 444 (1985) 113. https://doi.org/10.1016/0375-9474(85)90294-5

11. Yu.V. Sokolov. Level Density of Atomic Nuclei (Moskva: Energoatomizdat, 1990). (Rus)

12. S. Shlomo, J.B. Natowitz. Level density parameter in hot nuclei. Phys. Lett. B 252 (1990) 187. https://doi.org/10.1016/0370-2693(90)90859-5

13. S. Shlomo, J.B. Natowitz. Temperature and mass dependence of level density parameter. Phys. Rev. C 44 (1991) 2878. https://doi.org/10.1103/PhysRevC.44.2878

14. S. Shlomo. Energy level density of nuclei. Nucl. Phys. A 539 (1992) 17. https://doi.org/10.1016/0375-9474(92)90233-A

15. S. Goriely. A new nuclear level density formula including shell and pairing correction in the light of a microscopic model calculation. Nucl. Phys. A 605 (1996) 28. https://doi.org/10.1016/0375-9474(96)00162-5

16. P. Demetriou, S. Goriely. Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695 (2001) 95. https://doi.org/10.1016/S0375-9474(01)01095-8

17. Y. Alhassid, G.F. Bertsch, L. Fang. Nuclear level statistics: Extending shell model theory to higher temperatures. Phys. Rev. C 68 (2003) 044322. https://doi.org/10.1103/PhysRevC.68.044322

18. T. von Egidy, D. Bucurescu. Systematics of nuclear level density parameters. Phys. Rev. C 72 (2005) 044311. https://doi.org/10.1103/PhysRevC.72.044311

19. T. von Egidy, D. Bucurescu. Spin distribution in low-energy nuclear level schemes. Phys. Rev. C 78 (2008) 051301(R). https://doi.org/10.1103/PhysRevC.78.051301

20. N.U.H. Syed et al. Level density and γ-decay properties of closed shell Pb nuclei. Phys. Rev. C 79 (2009) 024316. https://doi.org/10.1103/PhysRevC.79.024316

21. T. von Egidy, D. Bucurescu. Experimental energy-dependent nuclear spin distributions. Phys. Rev. C 80 (2009) 054310. https://doi.org/10.1103/PhysRevC.80.054310

22. Y. Alhassid et al. Direct microscopic calculation of nuclear level densities in the shell model Monte Carlo approach. Phys. Rev. C 92 (2015) 024307. https://doi.org/10.1103/PhysRevC.92.024307

23. Y. Alhassid et al. Benchmarking mean-field approximations to level densities. Phys. Rev. C 93 (2016) 044320. https://doi.org/10.1103/PhysRevC.93.044320

24. R. Sen'kov, V. Zelevinsky. Nuclear level density: Shell-model approach. Phys. Rev. C 93 (2016) 064304. https://doi.org/10.1103/PhysRevC.93.064304

25. S. Karampagia, V. Zelevinsky. Nuclear shape transitions, level density, and underlying interactions. Phys. Rev. C 94 (2016) 014321. https://doi.org/10.1103/PhysRevC.94.014321

26. A. Heusler et al. Complete identification of states in 208Pb below Ex = 6.2 MeV. Phys. Rev. C 93 (2016) 054321. https://doi.org/10.1103/PhysRevC.93.054321

27. V. Zelevinsky, S. Karampagia. Nuclear level density and related physics. EPJ Web Conf. 194 (2018) 01001. https://doi.org/10.1051/epjconf/201819401001

28. V. Zelevinsky, M. Horoi. Nuclear level density, thermalization, chaos, and collectivity. Prog. Part. Nucl. Phys. 105 (2019) 180. https://doi.org/10.1016/j.ppnp.2018.12.001

29. S. Karampagia, V. Zelevinsky. Nuclear shell model and level density. Int. J. Mod. Phys. E 29 (2020) 2030005. https://doi.org/10.1142/S0218301320300052

30. P. Fanto, Y. Alhassid. State densities of heavy nuclei in the static-path plus random-phase approximation. Phys. Rev. C 103 (2021) 064310. https://doi.org/10.1103/PhysRevC.103.064310

31. V.M. Kolomietz, A.G. Magner, V.M. Strutinsky. Shell effects in rotating nuclei. Sov. J. Nucl. Phys. 29 (1979) 758.

32. V.A. Plujko, O.M. Gorbachenko. Effect of vibrational states on nuclear level density. Phys. Atom. Nucl. 70 (2007) 1643. https://doi.org/10.1134/S1063778807090256

33. B.K Jennings, R.K. Bhaduri, M. Brack. Semiclassical approximation in a realistic one-body potential. Nucl. Phys. A 253 (1975) 29. https://doi.org/10.1016/0375-9474(75)90119-0

34. M. Brack, B.K. Jennings, Y.H. Chu. On the extended Thomas-Fermi approximation to the kinetic energy density. Phys. Lett. B 65 (1976) 1. https://doi.org/10.1016/0370-2693(76)90519-0

35. W.E. Ormand. Estimating the nuclear level density with the Monte Carlo shell model. Phys. Rev. C 56 (1997) R1678(R). https://doi.org/10.1103/PhysRevC.56.R1678

36. M. Gutzwiller. Periodic orbits and classical quantization conditions. J. Math. Phys. 12 (1971) 343. https://doi.org/10.1063/1.1665596

37. M. Gutzwiller. Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag, 1990). https://doi.org/10.1007/978-1-4612-0983-6

38. R. Balian, C. Bloch. Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations. Ann. Phys. 69 (1972) 76. https://doi.org/10.1016/0003-4916(72)90006-1

39. V.M. Strutinsky, A.G. Magner. Quasiclassical theory of nuclear shell structure. Sov. J. Part. Nucl. 7 (1976) 138.

40. A.G. Magner, V.M. Kolomietz, V.M. Strutinsky. Gross-shell effects in the single-particle level distribution with fixed angular momentum projection. Sov. J. Nucl. Phys. 28 (1978) 764.

41. M. Brack, R.K. Bhaduri. Semiclassical Physics. Frontiers in Physics. Vol. 96 (Boulder: Westview Press, 2003) 484 p. https://doi.org/10.1201/9780429502828

42. A.G. Magner et al. Shell structure and orbit bifurcations in finite fermion systems. Phys. Atom. Nucl. 74 (2011) 1445. https://doi.org/10.1134/S1063778811100061

43. M. Brack, C. Guet, H.-B. Hakansson. Selfconsistent semiclassical description of average nuclear properties - a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5

44. V.M. Kolomietz, A.I. Sanzhur, S. Shlomo. Self-consistent mean-field approach to the statistical level density in spherical nuclei. Phys. Rev. C 97 (2018) 064302. https://doi.org/10.1103/PhysRevC.97.064302

45. V.M. Kolomietz, S. Shlomo. Mean Field Theory (Singapore: World Scientific, 2020) 588 p. https://doi.org/10.1142/11593

46. V.M. Strutinsky. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95 (1967) 420; https://doi.org/10.1016/0375-9474(67)90510-6

V.M. Strutinsky. "Shells" in deformed nuclei. Nucl. Phys. A 122 (1968) 1. https://doi.org/10.1016/0375-9474(68)90699-4

47. M. Brack et al. Funny hills: The shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44 (1972) 320. https://doi.org/10.1103/RevModPhys.44.320

48. A.G. Magner et al. Semiclassical shell-structure micro-macroscopic approach for the level density. Phys. Rev. C 104 (2021) 044319. https://doi.org/10.1103/PhysRevC.104.044319

49. A.G. Magner et al. Shell-structure and asymmetry effects in level densities. Int. J. Mod. Phys. E 30 (2021) 2150092. https://doi.org/10.1142/S0218301321500920

50. A.G. Magner et al. Level density within a micro-macroscopic approach. Nucl. Phys. A 1021 (2022) 122423. https://doi.org/10.1016/j.nuclphysa.2022.122423

51. A.G. Magner et al. Microscopic-macroscopic level densities for low excitation energies. Low Temp. Phys. 48 (2022) 920. https://doi.org/10.1063/10.0014592

52. A.I. Levon et al. High-resolution study of excited states in 158Gd with the (p, t) reaction. Phys. Rev. C 102 (2020) 014308. https://doi.org/10.1103/PhysRevC.102.014308

53. N. Bohr, J.A. Wheeler. The mechanism of nuclear fission. Phys. Rev. 56 (1939) 426. https://doi.org/10.1103/PhysRev.56.426

54. V.M. Strutinsky. On the nuclear level density in case of an energy gap. In: Proceedings of the International Conference on Nuclear Physics (Paris, 1958) p. 617.

55. A. Bohr, B.R. Mottelson, D. Pines. Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110 (1958) 936. https://doi.org/10.1103/PhysRev.110.936

56. S.T. Belyaev. Effect of pairing correlations on nuclear properties. Mat. Fys. Medd. Dan. Vid. Selsk. 31 (1959) 3. https://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-31-11.pdf

57. J. Bardeen, L.N. Cooper, J.R. Schrieffer. Theory of superconductivity. Phys. Rev. 108 (1957) 1175. https://doi.org/10.1103/PhysRev.108.1175

58. P. Ring, P. Schuck. The Nuclear Many-Body Problem (New York: Springer-Verlag, 1980) 716 p. https://doi.org/10.1007/978-3-642-61852-9

59. N.N. Bogoliubov. A new method in the theory of superconductivity. I. Sov. Phys. JETP. 7 (1958) 41. http://jetp.ras.ru/cgi-bin/dn/e_007_01_0041.pdf

60. A. Sedrakian, J.W. Clark. Superfluidity in nuclear systems and neutron stars. Eur. Phys. J. A 55 (2019) 167. https://doi.org/10.1140/epja/i2019-12863-6

61. P. Möller et al. Nuclear ground-state masses and deformations: FRDM (2012). At. Data Nucl. Data Tables 109-110 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.002

62. U. Mutz, P. Ring. On the pairing collapse in nuclei at high angular momenta. J. Phys. G 10 (1984) L39. https://doi.org/10.1088/0305-4616/10/2/003

63. J.L. Edigo et al. On the validity of the mean field approach for the description of pairing collapse in finite nuclei. Phys. Lett. B 154 (1985) 1. https://doi.org/10.1016/0370-2693(85)91555-2

64. V.M. Strutinsky et al. Semiclassical interpretation of the gross-shell structure in deformed nuclei. Z. Phys. A 283 (1977) 269. https://doi.org/10.1007/BF01407208

65. A.V. Ignatyuk, Yu.V. Sokolov. Density of "particle-hole" excited states in shell model. Yad. Fiz. 16 (1972) 277. (Rus)

66. W. Dilg et al. Level density parameters for the back-shifted fermi gas model in the mass range 40<A<250. Nucl. Phys. A 217 (1973) 269. https://doi.org/10.1016/0375-9474(73)90196-6

67. B.K. Agrawal, S. Shlomo, V.K. Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310

68. D.V. Gorpinchenko, A.G. Magner, J. Bartel. Semiclassical and quantum shell-structure calculations of the moment of inertia. Int. J. Mod. Phys. E 30 (2021) 2150008. https://doi.org/10.1142/S0218301321500087

69. Evaluated Nuclear Structure Data File. National Nuclear Data Center On-Line Data Service for the ENSDF database. https://www.nndc.bnl.gov/ensdf/