Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 2, pages 154-161.
Section: Engineering and Methods of Experiment.
Received: 29.12.2022; Accepted: 09.05.2023; Published online: 19.06.2023.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2023.02.154

Quality assessment system for monolithic active micropixel detectors

M. V. Pugach*, V. M. Dobishuk, V. O. Kyva, O. S. Kovalchuk, V. M. Pugatch, M. A. Teklishyn, S. B. Chernyshenko

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: mvpugach@gmail.com

Abstract: A system for quality assessment of micropixel detectors is presented. The system includes a laser scanning microprobe and a setup for studying the response of micro detectors to minimum ionizing particles. The results of the validation of the developed system indicate its suitability for assessing the quality of the latest monolithic active pixel sensors (MAPS), promising elements of large-area tracking systems for future high-energy physics experiments. Comparison of MAPS with the double-sided microstrip detectors of the CBM experiment (FAIR, Darmstadt) indicates the feasibility of the upgrade of its Silicon Tracking System using MAPS.

Keywords: monolithic active micropixel detectors, hybrid micropixel detectors, double-sided microstrip detectors, microdetector quality assessment, CBM experiment.

References:

1. X. Llopart et al. Timepix4, a large area pixel detector readout chip which can be tiled on 4 sides providing sub-200 ps timestamp binning. JINST 17 (2022) C01044. https://doi.org/10.1088/1748-0221/17/01/C01044

2. P. Senger, V. Friese (CBM Collaboration). CBM Progress Report 2021. GSI-2022-00599 (Darmstadt: GSI, 2022) 239 p.; https://repository.gsi.de/record/246663

J. Heuser et al. Technical Design Report for the CBM Silicon Tracking System. GSI Report 2013-4. GSI-2013-05499 (Darmstadt: GSI, 2013) 167 p. https://repository.gsi.de/record/54798

3. H. Augustin et al. The MuPix high voltage monolithic active pixel sensor for the Mu3e experiment. JINST 10 (2015) C03044. https://doi.org/10.1088/1748-0221/10/03/C03044

4. K. Arndt et al. Technical design of the phase I Mu3e experiment. Nucl. Instrum. Meth. A 1014 (2021) 165679. https://doi.org/10.1016/j.nima.2021.165679

5. LHCb Collaboration. Framework TDR for the LHCb Upgrade II: Opportunities in flavour physics, and beyond, in the HL-LHC era: Technical Design Report. CERN-LHCC-2021-012. LHCB-TDR-023. (Geneva: CERN, 2012) 201 p. https://cds.cern.ch/record/2776420/files/LHCB-TDR-023.pdf

6. F. Reidt. ALICE ITS2 - A Monolithic Active Pixel Sensor Based Inner Tracking System for ALICE. CERN Detector Seminar, 21st October 2022. https://indico.cern.ch/event/1210704/

7. R. O’Neil. HV-MAPS for the LHCb Upgrade-II Mighty Tracker. In: The 31st International Workshop on Vertex Detectors 2022, Tateyama, Japan, 23 - 28 October 2022. https://cds.cern.ch/record/2838632/files/RONeil_VERTEX22_Talk__LHCb_MT_HVMAPS-9.pdf

8. I. Perić et al. High-Voltage CMOS Active Pixel Sensor. IEEE Journal of Solid-State Circuits 56(8) (2021) 2488. https://doi.org/10.1109/JSSC.2021.3061760

9. G.A. Rinella et al. First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors. Nucl. Instrum. Meth. A 1028 (2022) 166280. https://doi.org/10.1016/j.nima.2021.166280

10. P. Klaus et al. (CBM Collaboration). Technical Design Report for the CBM: Micro-Vertex Detector (MVD) (GSI, Darmstadt, Germany, 2022) 157 p.; http://repository.gsi.de/record/246516

M. Deveaux et al. Observations on MIMOSIS-0, the first dedicated CPS prototype for the CBM MVD. Nucl. Instrum. Meth. A 958 (2020) 162653. https://doi.org/10.1016/j.nima.2019.162653

11. G. Contin et al. The STAR MAPS-based PiXeL detector. Nucl. Instrum. Meth. A 907 (2018) 60. https://doi.org/10.1016/j.nima.2018.03.003

12. M. Campbell et al. Hybrid micropixel detector at the focal plane of the mass-spectrometer. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 10(4) (2009) 424. https://jnpae.kinr.kyiv.ua/10.4/Articles_PDF/jnpae-2009-10-0424-Campbell.pdf

13. M.V. Pugach et al. Usage of the micropixel detector TimePix for observation of the dynamics of phase transitions in metals. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 13(4) (2012) 382. (Ukr) https://jnpae.kinr.kyiv.ua/13.4/Articles_PDF/jnpae-2012-13-0382-Pugach.pdf

14. M. Pugach et al. Micropixel TimePix Detectors for Kinematics Complete Studies of the Reaction 11B(p, 3α). Annual Report - 2012 (Kyiv: Institute for Nuclear Research, 2013) p. 81; https://kinr.kyiv.ua/Annual_report/report12.pdf

C. Granja et al. Position-Sensitive Coincidence Detection of Nuclear Reaction Products with Two Timepix Detectors and Synchronized Readout. Proceedings of Science POS (X LASNPA) (2013) 043. https://doi.org/10.22323/1.194.0043

15. V. Pugatch et al. Metal micro-detector TimePix imaging synchrotron radiation beams at the ESRF Bio-Medical Beamline ID17. Nucl. Instr. Meth. A 682 (2012) 8. https://doi.org/10.1016/j.nima.2012.03.049

16. V. Pugatch et al. Characterization of equipment for shaping and imaging hadron minibeams. Nucl. Instrum. Meth. A 872 (2017) 119. https://doi.org/10.1016/j.nima.2017.08.007

17. V.M. Pugatch. Position Sensitive Micro-Strip and Micro-Pixel Detectors. Nauka ta Innovatsiyi 8(2) (2012) 26. https://doi.org/10.15407/scin8.02.026

18. V. Kraus et al. FITPix – fast interface for Timepix pixel detectors. JINST 6 (2011) C01079. https://doi.org/10.1088/1748-0221/6/01/C01079

19. J. Šolc et al. Monte Carlo modelling of pixel clusters in Timepix detectors using the MCNP code. Physica Medica 101 (2022) 79. https://doi.org/10.1016/j.ejmp.2022.08.002

20. V.M. Pugatch et al. Plasma technologies for manufacturing of micro-strip metal detectors of ionizing radiation. Problems of Atomics Science and Technology. Ser. Plasma Physics 13(1) (2007) 173. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2007_1/article_2007_1_173.pdf

21. A. Lymanets (CBM Collaboration). The Silicon Tracking System of the CBM Experiment at FAIR. Ukr. J. Phys. 64(7) (2019) 607. https://doi.org/10.15407/ujpe64.7.607

22. Alibava Systems. Instruments for Detection. https://alibavasystems.com/

23. V. Pugatch et al. Submicron position-sensitive detector. Nucl. Instrum. Meth. B 70(1-4) (1992) 574. https://doi.org/10.1016/0168-583X(92)95985-Z