Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 1, pages 40-50.
Section: Radiation Physics.
Received: 24.08.2022; Accepted: 16.03.2023; Published online: 12.04.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.01.040

Density-dependent analytical equations of radiation shielding parameters for super alloys by linear regression analysis

M. Aygun1, Z. Aygun2,*

1 Bitlis Eren University, Science and Art Faculty, Physics Department, Bitlis, Turkey
2 Bitlis Eren University, Vocational School of Technical Sciences, Bitlis, Turkey


*Corresponding author. E-mail address: zeynep.yarbasi@gmail.com

Abstract: Super alloys have great interest with good mechanical strength, surface stability, high operating temperatures, and high resistance to corrosion and oxidation features. In the study, new, reliable, and practical equations which give the radiation shielding parameters depending on the density of super alloys are obtained. For this analysis, MAR-247, MAR 302, Inconel 625, Inconel 718, Nimocast 75, WI-52, Inconel 617, Incoloy 800HT, Inconel 939, 713LC, and 7925A super alloys are chosen. The radiation shielding parameters such as linear attenuation coefficient, effective atomic number, half value layer, mean free path, and fast neutron removal cross-section are calculated by using Phy-X/PSD program. Then, new analytical equations providing the radiation shielding parameters by linear regression analysis are evaluated.

Keywords: super alloy, linear regression analysis, radiation shielding parameters, density-dependent analytical equations.

References:

1. M.H.A. Mhareb et al. Radiation shielding features for various tellurium-based alloys: a comparative study. J. Mater. Sci.: Mater. Electron. 32 (2021) 26798. https://doi.org/10.1007/s10854-021-07057-0

2. H.C. Manjunatha et al. A study of X-ray, gamma and neutron shielding parameters in Si-alloys. Radiat. Phys. Chem. 165 (2019) 108414. https://doi.org/10.1016/j.radphyschem.2019.108414

3. A.H. Almuqrin et al. Radiation shielding properties of selected alloys using EPICS2017 data library. Progress Nucl. Energy 137 (2021) 103748. https://doi.org/10.1016/j.pnucene.2021.103748

4. Z. Aygun, M. Aygun. A Theoretical Study on Radiation Shielding Characteristics of Magnetic Shielding Alloys, Ni80Fe15Mo5 and Ni77Fe14Cu5Mo4, by Determining the Photon Attenuation Parameters in the Energy Range of 15keV-100GeV. Karaelmas Sci. Engineer. J. 11(2) (2021) 165. https://dergipark.org.tr/en/pub/karaelmasfen/issue/66240/900452

5. A.M. Reda, A.A. El-Daly, E.A. Eid. Neutron/gamma radiation shielding characteristics and physical properties of (97.3-x)Pb-xCd-2.7Ag alloys for nuclear radiation applications. Phys. Scr. 96 (2021) 125321. https://doi.org/10.1088/1402-4896/ac3d4a

6. F.I. El-Agawany et al. Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. Eur. Phys. J. Plus 136 (2021) 527. https://doi.org/10.1140/epjp/s13360-021-01498-6

7. Z. Aygun, M. Aygun. Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. J. Polytech. (2022). In press. https://doi.org/10.2339/politeknik.1004657

8. N. Ekinci et al. Synthesis, physical properties, and gamma-ray shielding capacity of different Ni-based super alloys. Radiation Physics and Chemistry 186 (2021) 109483. https://doi.org/10.1016/j.radphyschem.2021.109483

9. M.I. Sayyed et al. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Appl. Sci. 10 (2020) 7680. https://doi.org/10.3390/app10217680

10. E. Şakar et al. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166 (2020) 108496. https://doi.org/10.1016/j.radphyschem.2019.108496

11. A.A. El-Sayed et al. Using artificial neural networks for predicting mechanical and radiation shielding properties of different nano-concretes exposed to elevated temperature. Const. Building Mater. 324 (2022) 126663. https://doi.org/10.1016/j.conbuildmat.2022.126663

12. S. Chithra et al. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Const. Building Mater. 114 (2016) 528. https://doi.org/10.1016/j.conbuildmat.2016.03.214

13. J.-S. Chou, C.-F. Tsai. Concrete compressive strength analysis using a combined classification and regression technique. Autom. Constr. 24 (2012) 52. https://doi.org/10.1016/j.autcon.2012.02.001

14. M.H. Kutner et al. Applied Linear Regression Models. 4th ed. (McGraw Hill, 2004) 701 p. Amazon book

15. G. Lakshminarayana et al. Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids 471 (2017) 222. https://doi.org/10.1016/j.jnoncrysol.2017.06.001

16. A.M. Zayed et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete. Const. Building Mater. 260 (2020) 120473. https://doi.org/10.1016/j.conbuildmat.2020.120473

17. C.D. Kudupudi et al. Identifying Correlation of Multiple Factors with Mortality Rate of COVID-19 Using Regression Models. Proc. of the Northeast Business & Economics Association (2020) p. 89.

18. Z. Aygun, M. Aygun. Radiation Shielding Potentials of Rene Alloys by Phy-X/PSD Code. Acta Physica Polonica A 141 (2022) 507. https://doi.org/10.12693/APhysPolA.141.507

19. M. Petrenec, K. Obrtlík, J. Polák. High Temperature Low Cycle Fatigue of Superalloys Inconel 713LC and Inconel 792-5A. Key Engineer. Mater. 348-349 (2007) 101. https://doi.org/10.4028/www.scientific.net/KEM.348-349.101

20. A. Formenti, A. Eliasson, H. Fredriksson. On the Dendritic Growth and Microsegregation in Ni-Base Superalloys In718, In625 and In939. High Temperature Mater. Processes 24(4) (2005) 221. https://doi.org/10.1515/HTMP.2005.24.4.221

21. C. Xiang et al. Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application. Intermetallics 104 (2019) 143. https://doi.org/10.1016/j.intermet.2018.11.001

22. E. Şakar. Determination of photon-shielding features and build-up factors of nickel-silver alloys. Radiat. Phys. Chem. 172 (2020) 108778. https://doi.org/10.1016/j.radphyschem.2020.108778

23. B. Alim. Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software. J. Inst. Sci. Tech. 10(1) (2020) 202. https://doi.org/10.21597/jist.640027

24. I. Akkurt, H.O. Tekin. Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software. Emerging Mater. Res. 9(3) (2020) 1020. https://doi.org/10.1680/jemmr.20.00209