Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 1, pages 34-39.
Section: Radiation Physics.
Received: 11.11.2022; Accepted: 16.03.2023; Published online: 12.04.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.01.034

Effects of lithium insertion into vanadium pentoxide thin films. Continuum radiation study

K. Bria1, M. Ait El Fqih1,*, R. Jourdani2, L. Jadoual2, A. Kaddouri2

1 Laboratory of Artificial Intelligence & Complex Systems Engineering, National Graduate School of Arts and Crafts, Hassan II University, Casablanca, Morocco
2 Laboratory of Materials, Energy, and Environment, Cadi Ayyad University, Marrakech, Morocco


*Corresponding author. E-mail address: m.aitelfqih@gmail.com

Abstract: Optical emission of Lix(x=0.2,0.7,1.2)V2O5 has been studied during 5 keV Kr+ ions bombardment. Continuous luminescence was observed in a broad wavelength range between 280 and 340 nm. Generally, the emission intensity was influenced by the quantities of lithium giving rise to transient effects as well as an increase in the line intensity. The experimental results suggest that the continuum emission depends on the nature of surface interaction between lithium and vanadium pentoxide and is very probably related to its electronic structure.

Keywords: sputtering, sol-gel, optical-emission, vanadium pentoxide, intercalation and deintercalation.

References:

1. B.W.J. Yang et al. Classification, summarization and perspectives on state-of-charge estimation of lithium-ion batteries used in electric vehicles: A critical comprehensive survey. J. Energy Storage 39 (2021) 102572. https://doi.org/10.1016/j.est.2021.102572

2. X. Xie et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification. ACS Nano 15 (2021) 1048. https://doi.org/10.1021/acsnano.0c07896

3. J. Wu et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 4 (2022) e12288. https://doi.org/10.1002/inf2.12288

4. Q.-H. Wu, A. Thissen, W. Jaegermann. Photoelectron spectroscopic study of Li intercalation into V2O5 thin films. Surf. Sci. 578 (2005) 203. https://doi.org/10.1016/j.susc.2005.01.042

5. Q.-H. Wu. Electrochemical potential of intercalation phase: Li/V2O5 system. Appl. Surf. Sci. 253 (2006) 1713. https://doi.org/10.1016/j.apsusc.2006.03.044

6. Q.-H. Wu, A. Thissen, W. Jaegemann. Photoelectron spectroscopic study of Na intercalation into V2O5 thin films. Solid State Ionics 167 (2004) 155. https://doi.org/10.1016/j.ssi.2003.12.016

7. J. Zheng et al. New strategy for the morphology-controlled synthesis of V2O5 microcrystals with enhanced capacitance as battery-type supercapacitor electrodes. Cryst. Growth Des. 18 (2018) 5365. https://doi.org/10.1021/acs.cgd.8b00776

8. Y. Wang et al. Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium-ion batteries. J. Mater. Chem. A 6 (2018) 6792. https://doi.org/10.1039/C8TA01390J

9. D.-W. Han et al. Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials. Electrochemistry Communications 11 (2009) 137. https://doi.org/10.1016/j.elecom.2008.10.052

10. H.H. Li et al. Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochemistry Communications 11 (2009) 95. https://doi.org/10.1016/j.elecom.2008.10.025

11. A. Eftekhari. Surface Modification of Thin-Film Based LiCoPO4 5 V Cathode with Metal Oxide. J. Electrochem. Soc. 151 (2004) A1456. https://doi.org/10.1149/1.1781411

12. K. Hammoum et al. Optical emissions of products sputtered from Fe, Fe2O3 and Fe3O4 powders. Eur. Phys. J. D 61 (2011) 469. https://doi.org/10.1140/epjd/e2010-10153-8

13. C.S. Lee, T.M. Yen, J.H. Lin. Light emission from an oxygen covered copper surface by ion bombardment. Surf. Sci. 488 (2001) 379. https://doi.org/10.1016/S0039-6028(01)01162-1

14. A. El Boujlaidi et al. Continuum radiation emitted from transition metals under ion bombardment. Eur. Phys. J. D 66 (2012) 273. https://doi.org/10.1140/epjd/e2012-30347-2

15. M. Ait El Fqih et al. On the validity of the electron transfer model in photon emission from ion bombarded vanadium surfaces. Eur. Phys. J. D 63 (2011) 97. https://doi.org/10.1140/epjd/e2011-10614-6

16. M. Benmoussa et al. Structural, Optical and Electrochromic Properties of Sol-Gel V2O5 Thin Films. Active and Passive Elec. Comp. 26(4) (2003) 245. https://doi.org/10.1080/0882751031000116223

17. A. Afkir et al. Angular distribution of particles sputtered from a copper target by 5-keV Kr ions: Experiment and simulation study. Surface and Interface Analysis 53(9) (2021) 792. https://doi.org/10.1002/sia.6980

18. M. Ait El Fqih, P.-G. Fournier. Ion beam sputtering monitored by optical spectroscopy. Acta Physica Polonica A 115(5) (2009) 901. https://doi.org/10.12693/APhysPolA.115.901

19. M. Ait El Fqih, P.-G. Fournier. Optical emission from Be, Cu and CuBe targets during ion beam sputtering. Nucl. Instrum. Methods B 267 (2009) 1206. https://doi.org/10.1016/j.nimb.2009.01.159

20. J. Yao et al. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials 11 (2018) 205. https://doi.org/10.1016/j.ensm.2017.10.014

21. L. Jadoual et al. Ion-photon emission from titanium target under ion beam sputtering. Nucl. Phys. At. Energy 22 (2021) 358. https://doi.org/10.15407/jnpae2021.04.358

22. H.D. Hagstrum. Ion-Neutralization Spectroscopy of Solids and Solid Surfaces. Phys. Rev. 150 (1966) 495. https://doi.org/10.1103/PhysRev.150.495

23. A.A. Radzig, B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions (Berlin, Heidelberg: Springer-Verlag, 1985) 466 p. https://doi.org/10.1007/978-3-642-82048-9

24. W.F. van der Weg, E. Lugujjo. Bombardment-induced photon emission from solids. In: Atomic Collisions in Solids. S. Datz, B.R. Appleton, C.D. Moak (Eds.). Vol. 2 (New York: Springer, 1975) p. 511. https://doi.org/10.1007/978-1-4615-8996-9_4

25. T.S. Kiyan, V.V. Gritsyna, Ya.M. Fogel. On the continuous spectrum emitted by particles ejected from the surface of solid targets by an ion beam. Nucl. Instrum. Meth. 132 (1976) 415. https://doi.org/10.1016/0029-554X(76)90768-0

26. C.W. White et al. Continuum optical radiation produced by low-energy heavy particle bombardment of metal targets. Nucl. Instr. Methods 132 (1976) 419. https://doi.org/10.1016/0029-554X(76)90769-2

27. C.B. Kerkdijk et al. Continuum photon emission by some metals under heavy ion bombardment. Nucl. Instr. Methods 132 (1976) 427. https://doi.org/10.1016/0029-554X(76)90770-9

28. E.O. Rausch, A.I. Bazhin, E.W. Thomas. On the origin of broad band optical emission from Mo, Nb, and W bombarded by heavy ions. J. Chem. Phys. 65 (1976) 4447. https://doi.org/10.1063/1.432979

29. E. Veje. Accelerator-based chemiluminescence from steady-state gas-surface reactions. Vacuum 39 (1989) 429. https://doi.org/10.1016/0042-207X(89)90257-1

30. A.I. Bazhin, M. Suchanska, S.V. Teplov. Model of continuum optical radiation induced by ion bombardment of metals. Nucl. Instrum. Meth. B 48 (1990) 639. https://doi.org/10.1016/0168-583X(90)90200-E

31. I.S.T. Tsong. Photon emission from sputtered particles during ion bombardment. Phys. Stat. Sol. (a) 7 (1971) 451. https://doi.org/10.1002/pssa.2210070219

32. I. Terzić, B. Perović. Spectral analysis of light emitted from metallic targets bombarded by high energy ions. Surf. Sci. 21 (1970) 86. https://doi.org/10.1016/0039-6028(70)90065-8

33. R.V. Stuart, G.K. Wehner. Sputtering Thresholds and Displacement Energies. Phys. Rev. Lett. 4 (1960) 409. https://doi.org/10.1103/PhysRevLett.4.409

34. H. Kerkow. Photon Emission during Bombardment of Solids with Alkali Ions in the Energy Range between 2 and 10 keV. Phys. Stat. Sol. (a) 10 (1972) 501. https://doi.org/10.1002/pssa.2210100219

35. K. Jensen, E. Veje. An experimental study of optical radiation from sputtered species. Z. Physik 269 (1974) 293. https://doi.org/10.1007/BF01668696