ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Description of photoabsorption using photon strength function with the excitation of two resonance states
O. M. Gorbachenko*, V. A. Plujko, A. I. Kucher, V. M. Petrenko
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
*Corresponding author. E-mail address:
gorbachenko@knu.ua
Abstract: The results of the use of photon strength function (PSF) of the model of two coupled damped oscillators (Two State Excitations, TSE) for the description of nuclear data for photoabsorption of electric dipole gamma-rays by atomic nuclei are presented. The response function widths dependent on gamma-ray energy were used instead of constant widths in the initial TSE model. It was demonstrated that such a phenomenological approach is a simple method for the description and prediction of the PSF with excitation of both low-energy (pigmy) dipole resonance (PDR) and high-energy giant dipole resonance (GDR). The best description of the experimental photoabsorption cross-sections is obtained at constant width in the PDR range and linear or quadratic energy-dependent width in the GDR range.
Keywords: dipole electric transitions, photon strength function, giant dipole resonance, pygmy dipole resonance, photoabsorption cross-section, widths of GDR and PDR.
References:1. R. Capote et al. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. Nucl. Data Sheets 110 (2009) 3107. https://doi.org/10.1016/j.nds.2009.10.004
2. B.L. Berman, S.C. Fultz. Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys. 47 (1975) 713. https://doi.org/10.1103/RevModPhys.47.713
3. V.A. Plujko et al. Giant dipole resonance parameters of ground-state photoabsorption: Experimental values with uncertainties. Atomic Data and Nuclear Data Tables 123-124 (2018) 1. https://doi.org/10.1016/j.adt.2018.03.002
4. S. Goriely, V. Plujko. Simple empirical E1 and M1 strength functions for practical applications. Phys. Rev. C 99 (2019) 014303. https://doi.org/10.1103/PhysRevC.99.014303
5. S. Goriely et al. Reference database for photon strength functions. European Physical Journal A 55(10) (2019) 172. https://doi.org/10.1140/epja/i2019-12840-1
6. T. Kawano et al. IAEA Photonuclear Data Library 2019. Nuclear Data Sheets 163 (2020) 109. https://doi.org/10.1016/j.nds.2019.12.002
7. B.M. Bondar et al. Gamma-ray spectrum from Cd induced by fast neutrons in indoor experiments. Nucl. Phys. A 1010 (2021) 122192. https://doi.org/10.1016/j.nuclphysa.2021.122192
8. V.A. Plujko et al. Reconstruction of high-energy part of the gamma-ray spectrum in thermal neutron capture by 113Cd. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 22 (2021) 221. https://doi.org/10.15407/jnpae2021.03.221
9. S. Goriely. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436 (1998) 10. https://doi.org/10.1016/S0370-2693(98)00907-1
10. V. Plujko et al. Improvements and testing practical expressions for photon strength functions of E1 gamma-transitions. EPJ Web of Conf. 146 (2017) 05014. https://doi.org/10.1051/epjconf/201714605014
11. V.A. Plujko et al. Description of photon strength functions at excitation of two resonance states. In: ÕÕVIII Annual Scientific Conference of the Institute for Nuclear Research of the National Academy of Sciences of Ukraine. Abstracts of reports, Kyiv, Sept. 27 - Oct. 1, 2021. (Kyiv: Institute for Nuclear Research, 2022) p. 52. https://kinr.kyiv.ua/kinr-2021/Book_of_Abstracts_2021.pdf
12. V.A. Plujko et al. Description of nuclear photoabsorption by photon strength functions and determination of characteristics of nuclear collective states. In: Uzhhorod School of Atomic Physics and Quantum Electronics to the 100th anniversary of the birth of Professor Ivan Zapisochny. Proc. of the Int. Conf., Uzhgorod, May 26 - 27, 2022 (Uzhgorod, 2022) p. 140. http://www.iep.org.ua/content/conferenc/zap100years/files/proc_conf_zap100years.pdf
13. A.S. Barker, Jr, J.J. Hopfield. Coupled-Optical-Phonon-Mode Theory of the Infrared Dispersion in BaTiO3, SrTiO3, and KTaO3. Phys. Rev. A 135 (1964) 1732. https://doi.org/10.1103/PhysRev.135.A1732
14. P. Adrich et al. Evidence for Pygmy and Giant Dipole Resonances in 130Sn and 132Sn. Phys. Rev. Lett. 95 (2005) 132501. https://doi.org/10.1103/PhysRevLett.95.132501
15. A. Makinaga et al. Dipole strength in 139La below the neutron-separation energy. Phys. Rev. C 82 (2010) 024314. https://doi.org/10.1103/PhysRevC.82.024314
16. R. Schwengner et al. Pygmy dipole strength in 90Zr. Phys. Rev. C 78 (2008) 064314. https://doi.org/10.1103/PhysRevC.78.064314
17. H. Utsunomiya et al. γ-ray strength function method and its application to 107Pd. Phys. Rev. C 82 (2010) 064610. https://doi.org/10.1103/PhysRevC.82.064610