Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2023, volume 24, issue 1, pages 5-16.
Section: Nuclear Physics.
Received: 26.12.2022; Accepted: 16.03.2023; Published online: 12.04.2023.
PDF Full text (en)
https://doi.org/10.15407/jnpae2023.01.005

Properties of the diffusion and drift kinetic coefficients in momentum space for a cold Fermi system

S. V. Lukyanov*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: lukyanov@kinr.kiev.ua

Abstract: Using the methods of kinetic theory, expressions for the diffusion and drift coefficients for a cold Fermi system are obtained. Their dependencies on the momentum are calculated for the step distribution function as well as in the case of excitation of a particle-hole pair.

Keywords: kinetic theory, Fermi system, diffusion approach, diffusion and drift coefficients.

References:

1. T. Bartsch, G. Wolschin. Equilibration in fermionic systems. Annals Phys. 400 (2019) 21. https://doi.org/10.1016/j.aop.2018.11.001

2. V.M. Kolomietz, S.V. Lukyanov. Diffusion on the Distorted Fermi Surface. Ukr. J. Phys. 59 (2014) 764. https://doi.org/10.15407/ujpe59.08.0764

3. V.M. Kolomietz, S.V. Lukyanov. Diffuse approximation to the kinetic theory in a Fermi system. Int. J. Mod. Phys. E 24 (2015) 1550023. https://doi.org/10.1142/S0218301315500238

4. S.V. Lukyanov. Diffuse relaxation approximation in a heated Fermi system. Int. J. Mod. Phys. E 30 (2021) 2150060. https://doi.org/10.1142/S0218301321500609

5. G. Wolschin. Equilibration in Finite Fermion Systems. Phys. Rev. Lett. 48 (1982) 1004. https://doi.org/10.1103/PhysRevLett.48.1004

6. A.A. Abrikosov, I.M. Khalatnikov. The theory of a Fermi Liquid (the properties of liquid 3He at low temperatures). Rep. Prog. Phys. 22 (1959) 329. https://doi.org/10.1088/0034-4885/22/1/310

7. V.M. Kolomietz et al. Collisional relaxation of collective motion in a finite Fermi liquid. Phys. Rev. C 58 (1998) 198. https://doi.org/10.1103/PhysRevC.58.198

8. E.M. Lifshitz, L.P. Pitaevskii. Physical Kinetics: Course of Theoretical Physics (Oxford: Pergamon Press, 1981) 452 p. https://www.sciencedirect.com/book/9780080264806/physical-kinetics

9. A.S. Davydov. Quantum Mechanics (Oxford: Pergamon Press, 1965) 652 p. https://shop.elsevier.com/books/quantum-mechanics/davydov/978-0-08-020438-3