![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Influence of the germanium and oxygen impurities on the radiation stability of the silicon
A. A. Groza, V. I. Varnina, P. G. Litovchenko, L. S. Marchenko, M. I. Starchik, L. I. Barabash, S. V. Berdnichenko
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract: Infrared absorption spectra of the Silicon single-crystals with the Germanium impurity (Ge ≤ 0.7 at. %) after the irradiation by the reactor neutron fluences of 5 · 1016 n/cm2 and 5 · 1019 n/cm2 are measured. It was shown that the Germanium impurity increases the radiation strength of Cz-Si to the formation of such radiation defects as divacancies. Silicon structure with the content of the Germanium from 0 to 14 at. % was studied by the selective etching method. It was shown that the uniformity of the defect (dislocation) distribution is maintained at small Germanium content ≤ 1 at. % and its homogeneous distribution within the ingot. On the base of such material the spectrometrical detectors of nuclear radiation have been produced. High Germanium concentration adulterate the homogeneity of its distribution in Silicon.
References:1. Dozillie B., Li Z., Eremin V. et. al. The effect of oxygen impurities in radiation hardness of FZ silicon detectors for HEP after neutron, proton and γ-irradiation. IEEE Trans. Nucl. Sci. 47 (2000) 1862. https://doi.org/10.1109/23.914465
2. Проект УНТЦ № 3126. Розробка радіаційно-стійких детекторів ядерних випромінювань на основі об'ємних Si1-xGex монокристалів із заданим співвідношенням компонентів (2007) 137 c.
3. Яшник В. І. Дефектоутворення в кремнії, легованому елементами ІV групи: Автореф. дис. ... канд. фіз.-мат. наук (Київ, 1994).
4. Khirunenko L. I., Kobzar O. A., Pomosov Ju. V. et al. Interstitial-Related Radiation Defects in Silicon Doped with Tin and Germanium. Solid State Phenomena 95 (2004) 393. https://doi.org/10.4028/www.scientific.net/SSP.95-96.393
5. Гроза А. А., Литовченко П. Г., Старчик М. І. Ефекти радіації в інфрачервоному поглинанні та структурі кремнію (Київ: Наук. думка, 2006) 124 с.
6. Cheng L. J., Corelli J. C., Corbett J. W., Watkins G. D. 1.8-, 3.3-, and 3.9-μ Bands in Silicon: Correlations with the Divacancy. Phys. Rev. 152 (1966) 761. https://doi.org/10.1103/PhysRev.152.761
7. Watkins G. D., Corbett J. W. Defects in Irradiated Silicon: Electron Paramagnetic Resonance of the Divacancy. Phys. Rev. 138 (1965) A543. https://doi.org/10.1103/PhysRev.138.A543
8. Bean A. R., Newman R. C., Smith R. S. Electron irradiation damage in Si containing carbon and oxygen. J. Phys. Chem. Sol. 31 (1970) 739. https://doi.org/10.1016/0022-3697(70)90207-6