Nuclear Physics and Atomic Energy

Ядерна фізика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2008, volume 9, issue 2, pages 60-67.
Section: Radiation Physics.
Received: 25.03.2008; Published online: 30.06.2008.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2008.02.060

Possibilities of increase of radiation firmness of semiconductor materials

P. G. Litovchenko1, L. I. Barabash1, S. V. Berdnichenko1, D. Bizello2, M. D. Varentsov1, V. I. Varnina1, A. A. Groza1, O. P. Dolgolenko1, A. Ya. Karpenko1, T. I. Kibkalo1, V. F. Lastovetsky1, A. P. Litovchenko2, V. N. Pidtynnykh3, L. A. Polivtsev1, S. B. Smirnov3, M. I. Starchik1

1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica, Università di Padova, Italy
3Sevastopol National University of Nuclear Energy and Industry, Sevastopol, Ukraine

Abstract: In given article various methods of the increase of the radiation hardness of semiconductors materials such as silicon and InSb are discussed. Parameters of silicon irradiated by different types and fluences of high energy irradiation and annealed were studied by optical and electrical methods. It was shown that the increase of the silicon radiation hardness can be obtained first of all due to radiation-thermal treatments (preliminary radiation and annealing). The important results of the radiation hardness increase were received for neutron irradiated silicon, doped by germanium izovalent impurity.

References:

1. Гроза А. А., Варнина В. И., Литовченко П. Г. и др. Структурно-фазовые превращения при термообработке облученного кремния и влияние их на электрофизические свойства и радиационную стойкость. Радиационное материаловедение 4 (1990) 127.

2. Maiheson J., Robbins M. S., Watts S. J. The effect of radiation induced defects on the performance of high resistivity silicon diodes. RD 20 Technical Report (CERN RD20, 1995) 95 p.

3. Dezillie B., Betes S., Glaser M. et al. Radiation hardness of silicon detectors manufactured on wafers from various sources. Nucl. Instr. and Meth. in Phys. Research A 388 (1997) 314. https://doi.org/10.1016/S0168-9002(97)00005-3

4. Italiantsev A. G., Kurbanov A. I., Mordkovich V. N. et al. Influence of neutron irradiation and annealing on Si doped with Ge properties. Fiz. Tekhn. Polupr. 22 (1988) 834.

5. Starostin K. L. Temperature dependence of concentration decreasing rate in n-Ge and n-Si under fast neutron irradiation. Fiz. Tekhn. Polupr. 4 (1970) 1823.

6. Karumidze G. S. Temperature irradiation influence with neutrons on defects of structure formation in Cz-Si. Fiz. Tekhn. Polupr. 24 (1990) 1971.

7. Kazakevich L. A., Kuznetsov V. I., Lugakov P. F. Regions of radiation defects aggregation formation in dislocation Si. Fiz. Tekhn. Polupr. 22 (1988) 499.

8. Гроза А. А., Литовченко П. Г., Старчик М. І. Ефекти радіації в інфрачервоному поглинанні та структурі кремнію (Київ: Наук. думка, 2006) 124 с.

9. Cheng L. J., Corelli J. C., Corbett J. W., Watkins G. D. 1.8-, 3.3-, and 3.9-μ Bands in Irradiated Silicon: Correlations with the Divacancy. Phys. Rev. 152 (1966) 761. https://doi.org/10.1103/PhysRev.152.761

10. Watkins G. D., Corbett J. W. Defects in Irradiated Silicon: Electron Paramagnetic Resonance of the Divacancy. Phys. Rev. 138 (1965) A543. https://doi.org/10.1103/PhysRev.138.A543

11. Gossick B. R. Disordered Regions in Semiconductors Bombarded by Fast Neutrons. J. Appl. Phys. 30 (1959) 1214. https://doi.org/10.1063/1.1735295

12. Долголенко А. П., Литовченко П. Г., Варенцов М. Д. и др. Особенности образования радиационных дефектов в кремнии с низкой и высокой концентрацией свободного кислорода. Зб. наук. праць Ін-ту ядерних досл. 6 (2005) 106. https://jnpae.kinr.kyiv.ua/06.2/Articles_PDF/jnpae-2005-06-2-106.pdf

13. Dolgolenko A. P., Fishchuk I. I. Defect Clusters and Simple Defect Build-Up Kinetics in Fast-Neutron Irradiated n-Si. Phys. Stat. Sol. 50 (1978) 751. https://doi.org/10.1002/pssa.2210500248

14. Хиврич В. И. О природе центров рекомбинации и отрицательном отжиге в γ-облученном Si. Радиационные дефекты в полупроводниках (Минск, 1972) c. 107.

15. Didkovsky A. P., Saakova A. K., Khivrich V. I. Some electrical properties of high resistivity radiation-doped silicon. Fiz. Tekhn. Polupr. 10 (1976) 543.

16. Litovchenko P. G., Lemeilleur F., Dolgolenko A. P. et al. Dose dependence of the concentration of carriers in high resistivity Si irradiated by 24 GeV protons and properties of the detectors on its base. DESY-Proceedings-1998-02, 12 - 14 Feb. 1998, 3rd. ROSE Workshop on Radiation Hardening of Silicon Detectors (Hamburg, 1998).

17. Litovchenko P. G., Wahl W., Groza A. A. et al. Influence of preliminary irradiation on radiation hardness of silicon and indium antimonide. Semiconductor Phys. Quantum Electronics & Optoelectronic 4 (2001) 85. https://doi.org/10.15407/spqeo4.02.085

18. Groza A. A., Кhivritch V. I. Near edge adsorption in the silicon irradiated by neutrons and by 1.5 MeV electrons. Phiz. Techn. Polupr. 13 (1979) 870.

19. Groza A. A., Kutz V. I., Litovchenko P. G., Khivrich V. I. The factors influencing formation oxygen-defect complexes in silicon single crystals. Elektronnaya Technika 6 (1983) 60.

20. Lugakov P. F., Lukjanitsa V. V. The defects nature and peculiar properties of its creation during neutron transmutation doped silicon irradiation. Fiz. Tekhn. Polupr. 17 (1983) 1601.

21. Casse G., Allport P. P., Hanlon M. Improving the radiation hardness properties of silicon detectors using oxygenated n-type and p-type silicon. IEEE Trans. Nucl. Sci. 47 (2000) 527. https://doi.org/10.1109/23.856475

22. Bisello D., Candelori., Rando R. et al. Neutron Irradiation Effects on Standard and Oxygenated Silicon Diodes. IEEE Trans. Nucl. Sci. 49 (2002) 1027. https://doi.org/10.1109/TNS.2002.1039609