![]() |
Ядерна фізика та енергетика
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Physical principles of the nuclear burning wave reactor. I
V. M. Pavlovych1, V. M. Khotyayintsev2, O. M. Khotyayintseva1
1Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Kyiv Taras Shevchenko National University, Kyiv, Ukraine
Abstract: This paper aims to make clear the physics of the processes determining the stationary wave of the nuclear burning, and also to find the effective theoretical approaches for determining of its parameters. It is shown that the diffusion equation for fluence may be used both for the stationary and unstationary processes in the nuclear burning wave. Also, the system evolution corresponding to the stationary wave passing it is useful to present as a motion along the coordinate of fluence ψ from the initial zero value to some final value ψf. General balance conditions of the integral type determining stationary wave as a self-consistent time and spatial process are formulated firstly. There are two such conditions. The first one is the condition of equality of the total numbers of neutrons generated and absorbed at the wave passing. The second one is the coincidence condition of "the centers of weight" of the neutron generation and absorption distributions along the co-ordinate of fluence. Together with nuclei kinetic equations these two conditions determine the velocity of the wave and ψf as the functions of control parameters of the system.
References:1. Феоктистов Л. П. Нейтронно-делительная волна. Докл. Акад. наук СССР. 309 (1989) 864;
Феоктистов Л. П. Безопасность - ключевой момент возрождения ядерной энергетики. Успехи физ. наук 8 (1993) 89.
2. Teller E. Nuclear Energy for the Third Millennium. Environment and Nuclear Energy. Preprint UCRL-JC-129547, LLNL (1997).
3. Гольдин В. Я., Анистратов Д. Ю. Реактор на быстрых нейтронах в саморегулируемом нейтронно-ядерном режиме. Мат. моделирование 7 (1995) 12.
4. Гольдин В. Я., Пестрякова Г. А. Трощиев Ю. В., Аристова Е. Н. Быстрый реактор на оксидном уран-плутониевом топливе в саморегулируемом режиме. Атомная энергия 94 (2003) 184.
5. Sekimoto H. et al. CANDLE: The New Burnup Strategy. Nucl. Sci. Eng. 139 (2001) 306. https://doi.org/10.13182/NSE01-01
6. Sekimoto H., Tanaka K. Application of CANDLE Burnup Strategy to Small Reactors. Trans. Am. Nucl. Soc. 87 (2002) 399.
7. Sekimoto H., Ohoka Y. Application of Candle Burnup to Block-Fuel High Temperature Gas Reactor. Proc. of ICAAP’03, CD. Paper 3013 (Cordoba, May 4 - 7, 2003).
8. Fomin S. P., Mel'nik Yu. P., Pilipenko V. V., Shul'ga N. F. Investigation of Self-Organization of the Non-Linear Nuclear Burning Regime in Fast Neutron Reactors. Annals of Nuclear Energy 32 (2005) 1435. https://doi.org/10.1016/j.anucene.2005.04.001
9. Fomin S. P., Mel'nik Yu. P., Pilipenko V. V., Shul'ga N. F. Study of self-organizing regime of nuclear burning wave in fast reactor. Problems of Atomic Science and Technology 6 (2005) 106.
10. Rusov V. D., Pavlovich V. N., Vaschenko V. N. et al. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth's core. Journal of Geophysical Research 112 (2007) B09203. https://doi.org/10.1029/2005JB004212
11. Van Dam H. Self-stabilizing criticality waves. Annals of Nuclear Energy 27 (2000) 1505. https://doi.org/10.1016/S0306-4549(00)00035-9
12. Van Dam H. Flux distributions in stable criticality waves. Annals of Nuclear Energy 30 (2003) 1495. https://doi.org/10.1016/S0306-4549(03)00098-7
13. Xue-Nong Chen, Werner Maschek. Transverse buckling effects on solitary burn-up waves. Annals of Nuclear Energy 32 (2005) 1377. https://doi.org/10.1016/j.anucene.2005.01.012
14. Павлович В. Н., Хотяинцева Е. Н., Русов В. Д. и др. Реактор на медленной волне ядерного горения. Атомная энергия 102 (2007) 151.