THERMAL ANNEALING OF CLUSTERS AND POINT DEFECTS IN n-Si (Cz) IRRADIATED BY FAST-PILE NEUTRONS

A. P. Dolgolenko, M. D. Varentsov, G. P. Gaidar, P. G. Litovchenko

Thermal stability of clusters and point defects in n-Si grown by Czochralski technique (Cz) was studied after irradiation by thefluence ~ $(2 \div 4) \cdot 10^{13} \text{ n}^{\circ} \text{cm}^{-2}$ of fast-pile neutrons. The effective concentration of carriers after series of isochronal and isothermal annealings of irradiated n-type silicon with $n_0 = (0.4 \div 1.2) \cdot 10^{14} \text{ cm}^{-3}$ before irradiation was described in the framework of the defect cluster corrected model. Stages of isochronal annealing process of defect clusters were determined with activation energies (E_a) and frequency factors (v): $E_{a1} = 0.81 \text{ eV}, v_1 = 5.4 \cdot 10^6 \text{ s}^{-1}; E_{a2} = 0.4 \text{ eV}, v_2 = 1 \text{ s}^{-1}; E_{a3} = 1.3 \text{ eV}, v_3 = 6 \cdot 10^4 \text{ s}^{-1}$. Isothermal annealing at 353 K of defect clusters and interstitial atoms I_{Si} ($E_c - 0.315 \text{ eV}$) in the conducting matrix of silicon was described with $E_a = 0.74 \text{ eV}$ and $v = (1 \div 3.5) \cdot 10^6 \text{ c}^{-1}$.