Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2022, volume 23, issue 3, pages 164-171.
Section: Nuclear Physics.
Received: 05.08.2022; Accepted: 09.11.2022; Published online: 27.11.2022.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2022.03.164

Potentials of interaction of 10,11,12,13B isotopes with 12C

S. Yu. Mezhevych1,*, A. T. Rudchik1, O. A. Ponkratenko1, K. Rusek2, K. W. Kemper3, V. M. Kyrianchuk4, A. A. Rudchik1, Yu. M. Stepanenko1, V. V. Uleshchenko1

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
3 Physics Department, Florida State University, Tallahassee, USA
4 Scientific and Technical Center of National Nuclear Energy Generating Company "Energoatom", Kyiv, Ukraine


*Corresponding author. E-mail address: sermezhev@gmail.com

Abstract: A comparative analysis of calculations for the 12Ñ(10Â,10Â)12Ñ elastic scattering at Ålab(10B) = 41.3 MeV, the 12Ñ(11Â,11Â)12Ñ elastic scattering at Ålab(11B) = 40.0 MeV, transfer reactions 13Ñ(11Â,12Ñ)12 and 14Ñ(11Â,12Ñ)13 at Ålab(11B) = 45.0 Ìå was performed within the coupled-reaction-channels method (CRC) using previously deduced Woods-Saxon potentials for the interaction of 10,11,12,13 + 12Ñ nuclei in the exit reaction channels, as well as potentials for these systems of nuclei generated by means of the double-folding method using theoretically modeled shapes for the distributions of protons and neutrons in 10,11,12,13 and 12Ñ. The relationship of isotopic effects (differences of the calculated CRC cross sections when replacing the potential for a given pair of nuclei by interaction potential for one nucleus with the isotope of another nucleus) with the internal structure, e.g. the shapes of nucleon density distributions in the interacting nuclei, is investigated. The shapes (radial dependence) of recently deduced Woods-Saxon potentials and potentials calculated by means of the double-folding methods for the systems of 10,11,12,13 + 12Ñ nuclei are compared. Based on the results of the analysis of experimental data, an assumption is made about the possible differences in the shapes of surface nucleon density distributions from the ones modeled theoretically in 10,11B isotopes.

Keywords: Keywords: nuclear reactions 12C(10B,10Â)12Ñ, 12C(11B,11Â)12Ñ, 13C(11B,12Ñ)12Â, 14C(11B,12Ñ)13Â, coupled-reaction-channels method, optical potentials, nucleon density distributions.

References:

1. Yong-Li Xu et al. Applicability of 9Be global optical potential to description of 8,10,11B elastic scattering. Chin. Phys. C 44(3) (2020) 034101. https://doi.org/10.1088/1674-1137/44/3/034101

2. S.Yu. Mezhevych et al. 14Ñ(11B, 10B)15C reaction at Elab = 45 MeV and the 10B + 15C optical potential. Acta Phys. Pol. B 52(2) (2021) 109. https://doi.org/10.5506/APhysPolB.52.109

3. D. Pereira et al. An imaginary potential with universal normalization for dissipative processes in heavy-ion reactions. Phys. Lett. B 670(4-5) (2009) 330. https://doi.org/10.1016/j.physletb.2008.10.066

4. M. Cavallaro et al. Quantitative analysis of two-neutron correlations in the 12C(18O,16O)14C reaction. Phys. Rev. C 88(5) (2013) 054601. https://doi.org/10.1103/PhysRevC.88.054601

5. B. Paes et al. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni. Phys. Rev. C 96(4) (2017) 044612. https://doi.org/10.1103/PhysRevC.96.044612

6. A.T. Rudchik et al. 7Li(15N,14N)8Be reaction at 81 MeV and 14C + 8Be interaction versus that of 13C + 8Be. Nucl. Phys. A 971 (2018) 138. https://doi.org/10.1016/j.nuclphysa.2018.01.014

7. S.Yu. Mezhevych et al. Reaction 14Ñ(11B,12C)13B at Elab(11B) = 45 MeV, interaction of 13B + 12C versus that of 10,11,12B + 12C. Nucl. Phys. At. Energy 2(1) (2022) 12. https://doi.org/10.15407/jnpae2022.01.012

8. N. Burtebayev et al. Measurement and analysis of 10B + 12C elastic scattering at energy of 41.3 MeV. Int. J. Mod. Phys. E 28(04) (2019) 1950028. https://doi.org/10.1142/S0218301319500289

9. A.T. Rudchik et al. The 11B + 12C elastic and inelastic scattering at Elab(11B) = 49 MeV and energy dependence of the 11B + 12C interaction. Nucl. Phys. A 695(1-4) (2001) 51. https://doi.org/10.1016/S0375-9474(01)01106-X

10. S.Yu. Mezhevych et al. 13Ñ(11B,12C)12B reaction at 45 MeV, 12C + 12B interaction versus that of 12C + 10,11B. Acta Phys. Pol. B 51(10) (2020) 1949. https://doi.org/10.5506/APhysPolB.51.1949

11. S. Ahmad, A.A. Usmani, Z.A. Khan. Matter radii of light proton-rich and neutron-rich nuclear isotopes. Phys. Rev. C 96(6) (2017) 064602. https://doi.org/10.1103/PhysRevC.96.064602

12. J.F. Mateja et al. 11B + 12C and 10B + 13C fusion cross sections. Phys. Rev. C 25(6) (1982) 2963. https://doi.org/10.1103/PhysRevC.25.2963

13. S. Albergo et al. Elastic transfer in the 11B + 12C system in the c.m. energy range 5 - 40 MeV. Phys. Rev. C 43(6) (1991) 2704. https://doi.org/10.1103/PhysRevC.43.2704

14. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7(4) (1988) 167. https://doi.org/10.1016/0167-7977(88)90005-6

15. J. Cook. DFPOT – A program for the calculation of double folded potentials. Comput. Phys. Commun. 25(2) (1982) 125. https://doi.org/10.1016/0010-4655(82)90029-7

16. G. Bertsch et al. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284(3) (1977) 399. https://doi.org/10.1016/0375-9474(77)90392-X

17. S.Yu. Mezhevych, K. Rusek. Quadrupole deformation of 11B (3/2-, 5.02 MeV) excited state from 11B + 12C scattering. Acta Phys. Pol. B 34(4) (2003) 2415. https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=34&page=2415