ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Van der Waals equation of state for asymmetric nuclear matter
A. I. Sanzhur*
Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
andriy.sanzhur@gmail.com
Abstract: The application of the van der Waals equation of state to the asymmetric nuclear matter is considered in a critical state region. The corrections to the van der Waals pressure and free energy due to the Fermi statistics are obtained starting from the Thomas - Fermi entropy expression which ensures the fulfilment of the Nernst theorem. The derived corrections account for the effective nucleon mass and neutron-proton isotopic asymmetry. The parameters of the van der Waals equation of state are deduced by taking the experimental value of critical temperature for symmetric nuclear matter and testing the model of van der Waals with statistics corrections included against the theory of Skyrme energy density functional. A critical line in pressure-temperature-composition space is considered. The incompressibility coefficient is determined along the critical line as a function of nuclear matter composition. A jump in the value of specific heat upon crossing a critical line is discussed.
Keywords: asymmetric nuclear matter, equation of state, critical line.
References:1. J.D. van der Waals. Over de Continuiteit van den Gas- en Vloeistoftoestand (Leiden: Sijthoff, 1873); https://www.worldcat.org/title/over-de-continuiteit-van-den-gas-en-vloeistoftoestand/oclc/3301223
J.S. Rowlinson. J.D. Van Der Waals: On the Continuity of the Gaseous and Liquid States (Amsterdam: Elsevier, 1988). https://www.worldcat.org/title/jd-van-der-waals-on-the-continuity-of-the-gaseous-and-liquid-states/oclc/7328970422. J.E. Mayer, M.G. Mayer. Statistical Mechanics (New York: Wiley, 1940). Google books
3. J. Frenkel. Kinetic Theory of Liquids (Oxford: Clarendon Press, 1946). https://www.worldcat.org/title/kinetic-theory-of-liquids/oclc/802841389
4. L.D. Landau, E.M. Lifshitz. Statistical Physics. Part 1 (Oxford: Pergamon Press, 1980) 449 p.
5. J. Pochodzalla et al. Probing the nuclear liquid-gas phase transition. Phys. Rev. Lett. 75 (1995) 1040. https://doi.org/10.1103/PhysRevLett.75.1040
6. J.B. Natowitz et al. Limiting temperatures and the equation of state of nuclear matter. Phys. Rev. Lett. 89 (2002) 212701. https://doi.org/10.1103/PhysRevLett.89.212701
7. J.B. Natowitz et al. Caloric curves and critical behavior in nuclei. Phys. Rev. C 65 (2002) 034618. https://doi.org/10.1103/PhysRevC.65.034618
8. V.A. Karnaukhov et al. Critical temperature for the nuclear liquid-gas phase transition. Phys. Rev C 67 (2003) 011601(R). https://doi.org/10.1103/PhysRevC.67.011601
9. H. Jaqaman, A.Z. Mekjian, L. Zamick. Nuclear condensation. Phys. Rev. C 27 (1983) 2782. https://doi.org/10.1103/PhysRevC.27.2782
10. S.N. Fedotkin, A.G. Magner, M.I. Gorenstein. Effects of quantum statistics near the critical point of nuclear matter. Phys. Rev. C 100 (2019) 054334. https://doi.org/10.1103/PhysRevC.100.054334
11. H.A. Bethe. Theory of nuclear matter. Ann. Rev. Nucl. Sci. 21 (1971) 93. https://doi.org/10.1146/annurev.ns.21.120171.000521
12. J.W. Negele, D. Vautherin. Density-Matrix Expansion for an Effective Nuclear Hamiltonian. Phys. Rev. C 5 (1972) 1472. https://doi.org/10.1103/PhysRevC.5.1472
13. T.H.R. Skyrme. CVII. The nuclear surface. Phil. Mag. 1 (1956) 1043. https://doi.org/10.1080/14786435608238186
14. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6
15. D. Vautherin, D.M. Brink. Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626
16. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein. Van der Waals equation of state with Fermi statistics for nuclear matter. Phys. Rev. C 91 (2015) 064314. https://doi.org/10.1103/PhysRevC.91.064314
17. R.V. Poberezhnyuk et al. Noncongruent phase transitions in strongly interacting matter within the quantum van der Waals model. Phys. Rev. C 99 (2019) 024907. https://doi.org/10.1103/PhysRevC.99.024907
18. J.S. Rowlinson. The Properties of Real Gases. In: Thermodynamics of Gases (Berlin: Springer-Verlag, 1958) p. 1. https://doi.org/10.1007/978-3-642-45892-7_1
19. S.I. Sandler, H. Orbey. Mixing and Combining Rules. In: Equations of State for Fluids and Fluid Mixtures. Part I. (Amsterdam: Elsevier, 2000) p. 321. Google books
20. W.A. Küpper, G. Wegmann, E.R. Hilf. Thermostatic properties of symmetric nuclear matter. Ann. Phys. 88 (1974) 474. https://doi.org/10.1016/0003-4916(74)90178-X
21. M. Brack, C. Guet, H.-B. Håkansson. Selfconsistent semiclassical description of average nuclear properties – a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5
22. V.M. Kolomietz, S. Shlomo. Static properties of nuclei. In: Mean Field Theory (Singapore: World Scientific, 2020) p. 130. https://doi.org/10.1142/11593
23. F. Perey, B. Buck. A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32 (1962) 353. https://doi.org/10.1016/0029-5582(62)90345-0
24. G.E. Brown, J.H. Gunn, P. Gould. Effective mass in nuclei. Nucl. Phys. 46 (1963) 598. https://doi.org/10.1016/0029-5582(63)90631-X
25. S. Shlomo, V.M. Kolomietz. Hot nuclei. Rep. Prog. Phys. 68 (2005) 1. https://doi.org/10.1088/0034-4885/68/1/R01
26. V.M. Kolomietz, A.I. Sanzhur, S. Shlomo. Self-consistent mean-field approach to the statistical level density in spherical nuclei. Phys. Rev. C 97 (2018) 064302. https://doi.org/10.1103/PhysRevC.97.064302
27 C. Mondal et al. Interdependence of different symmetry energy elements. Phys. Rev. C 96 (2017) 021302(R). https://doi.org/10.1103/PhysRevC.96.021302
28. Tuhin Malik et al. Nucleon effective mass and its isovector splitting. Phys. Rev. C 98 (2018) 064316. https://doi.org/10.1103/PhysRevC.98.064316
29. J.S. Rowlinson, F.L. Swinton. The thermodynamics of liquid mixtures. In: Liquids and Liquid Mixtures (London: Butterworth Scientific, 1982) p. 86. https://www.elsevier.com/books/liquids-and-liquid-mixtures/rowlinson/978-0-408-24193-9
30. R.V. Poberezhnyuk et al. Quantum van der Waals and Walecka models of nuclear matter. Int. J. Mod. Phys. E 26 (2017) 1750061. https://doi.org/10.1142/S0218301317500616
31. D.H. Youngblood, H.L. Clark, Y.-W. Lui. Incompressibility of nuclear matter from the giant monopole resonance. Phys. Rev. Lett. 82 (1999) 691. https://doi.org/10.1103/PhysRevLett.82.691
32. G. Bonasera, M.R. Anders, S. Shlomo. Giant resonances in 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm, and 208Pb. Phys. Rev. C 98 (2018) 054316. https://doi.org/10.1103/PhysRevC.98.054316
33. H. Müller, B.D. Serot. Phase transitions in warm, asymmetric nuclear matter. Phys. Rev. C 52 (1995) 2072. https://doi.org/10.1103/PhysRevC.52.2072
34. M. Dutra et al. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85 (2012) 035201. https://doi.org/10.1103/PhysRevC.85.035201
35. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310
36. L.G. Cao et al. From Brueckner approach to Skyrme-type energy density functional. Phys. Rev. C 73 (2006) 014313. https://doi.org/10.1103/PhysRevC.73.014313
37. A.W. Steiner et al. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411 (2005) 325. https://doi.org/10.1016/j.physrep.2005.02.004
38. M. Rashdan. A Skyrme parametrization based on nuclear matter BHF calculations. Mod. Phys. Lett. A 15 (2000) 1287. https://doi.org/10.1142/S0217732300001663
39. P.A.M. Guichon et al. Physical origin of density dependent forces of Skyrme type within the quark meson coupling model. Nucl. Phys. A 772 (2006) 1. https://doi.org/10.1016/j.nuclphysa.2006.04.002
40. M.A. Anisimov et al. Crossover to global critical phenomena in fluids. Physica A 188 (1992) 487. https://doi.org/10.1016/0378-4371(92)90329-O
41. F.J. Fernandez Velicia. New functional expansions for the Fermi-Dirac functions. Phys. Rev. A 30 (1984) 1194. https://doi.org/10.1103/PhysRevA.30.1194
42. E.C. Stoner. XXIV. The thermodynamic functions for a Fermi-Dirac gas. Phil. Mag. 28 (1939) 257. https://doi.org/10.1080/14786443908521182
43. A. Sommerfeld. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z. Phys. 47 (1928) 1. https://doi.org/10.1007/BF01391052