Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2022, volume 23, issue 2, pages 79-92.
Section: Nuclear Physics.
Received: 27.07.2022; Accepted: 14.09.2022; Published online: 29.09.2022.
PDF Full text (en)
https://doi.org/10.15407/jnpae2022.02.079

Van der Waals equation of state for asymmetric nuclear matter

A. I. Sanzhur*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: andriy.sanzhur@gmail.com

Abstract: The application of the van der Waals equation of state to the asymmetric nuclear matter is considered in a critical state region. The corrections to the van der Waals pressure and free energy due to the Fermi statistics are obtained starting from the Thomas - Fermi entropy expression which ensures the fulfilment of the Nernst theorem. The derived corrections account for the effective nucleon mass and neutron-proton isotopic asymmetry. The parameters of the van der Waals equation of state are deduced by taking the experimental value of critical temperature for symmetric nuclear matter and testing the model of van der Waals with statistics corrections included against the theory of Skyrme energy density functional. A critical line in pressure-temperature-composition space is considered. The incompressibility coefficient is determined along the critical line as a function of nuclear matter composition. A jump in the value of specific heat upon crossing a critical line is discussed.

Keywords: asymmetric nuclear matter, equation of state, critical line.

References:

1. J.D. van der Waals. Over de Continuiteit van den Gas- en Vloeistoftoestand (Leiden: Sijthoff, 1873); https://www.worldcat.org/title/over-de-continuiteit-van-den-gas-en-vloeistoftoestand/oclc/3301223

J.S. Rowlinson. J.D. Van Der Waals: On the Continuity of the Gaseous and Liquid States (Amsterdam: Elsevier, 1988). https://www.worldcat.org/title/jd-van-der-waals-on-the-continuity-of-the-gaseous-and-liquid-states/oclc/732897042

2. J.E. Mayer, M.G. Mayer. Statistical Mechanics (New York: Wiley, 1940). Google books

3. J. Frenkel. Kinetic Theory of Liquids (Oxford: Clarendon Press, 1946). https://www.worldcat.org/title/kinetic-theory-of-liquids/oclc/802841389

4. L.D. Landau, E.M. Lifshitz. Statistical Physics. Part 1 (Oxford: Pergamon Press, 1980) 449 p.

5. J. Pochodzalla et al. Probing the nuclear liquid-gas phase transition. Phys. Rev. Lett. 75 (1995) 1040. https://doi.org/10.1103/PhysRevLett.75.1040

6. J.B. Natowitz et al. Limiting temperatures and the equation of state of nuclear matter. Phys. Rev. Lett. 89 (2002) 212701. https://doi.org/10.1103/PhysRevLett.89.212701

7. J.B. Natowitz et al. Caloric curves and critical behavior in nuclei. Phys. Rev. C 65 (2002) 034618. https://doi.org/10.1103/PhysRevC.65.034618

8. V.A. Karnaukhov et al. Critical temperature for the nuclear liquid-gas phase transition. Phys. Rev C 67 (2003) 011601(R). https://doi.org/10.1103/PhysRevC.67.011601

9. H. Jaqaman, A.Z. Mekjian, L. Zamick. Nuclear condensation. Phys. Rev. C 27 (1983) 2782. https://doi.org/10.1103/PhysRevC.27.2782

10. S.N. Fedotkin, A.G. Magner, M.I. Gorenstein. Effects of quantum statistics near the critical point of nuclear matter. Phys. Rev. C 100 (2019) 054334. https://doi.org/10.1103/PhysRevC.100.054334

11. H.A. Bethe. Theory of nuclear matter. Ann. Rev. Nucl. Sci. 21 (1971) 93. https://doi.org/10.1146/annurev.ns.21.120171.000521

12. J.W. Negele, D. Vautherin. Density-Matrix Expansion for an Effective Nuclear Hamiltonian. Phys. Rev. C 5 (1972) 1472. https://doi.org/10.1103/PhysRevC.5.1472

13. T.H.R. Skyrme. CVII. The nuclear surface. Phil. Mag. 1 (1956) 1043. https://doi.org/10.1080/14786435608238186

14. T.H.R. Skyrme. The effective nuclear potential. Nucl. Phys. 9 (1959) 615. https://doi.org/10.1016/0029-5582(58)90345-6

15. D. Vautherin, D.M. Brink. Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei. Phys. Rev. C 5 (1972) 626. https://doi.org/10.1103/PhysRevC.5.626

16. V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein. Van der Waals equation of state with Fermi statistics for nuclear matter. Phys. Rev. C 91 (2015) 064314. https://doi.org/10.1103/PhysRevC.91.064314

17. R.V. Poberezhnyuk et al. Noncongruent phase transitions in strongly interacting matter within the quantum van der Waals model. Phys. Rev. C 99 (2019) 024907. https://doi.org/10.1103/PhysRevC.99.024907

18. J.S. Rowlinson. The Properties of Real Gases. In: Thermodynamics of Gases (Berlin: Springer-Verlag, 1958) p. 1. https://doi.org/10.1007/978-3-642-45892-7_1

19. S.I. Sandler, H. Orbey. Mixing and Combining Rules. In: Equations of State for Fluids and Fluid Mixtures. Part I. (Amsterdam: Elsevier, 2000) p. 321. Google books

20. W.A. Küpper, G. Wegmann, E.R. Hilf. Thermostatic properties of symmetric nuclear matter. Ann. Phys. 88 (1974) 474. https://doi.org/10.1016/0003-4916(74)90178-X

21. M. Brack, C. Guet, H.-B. Håkansson. Selfconsistent semiclassical description of average nuclear properties – a link between microscopic and macroscopic models. Phys. Rep. 123 (1985) 275. https://doi.org/10.1016/0370-1573(86)90078-5

22. V.M. Kolomietz, S. Shlomo. Static properties of nuclei. In: Mean Field Theory (Singapore: World Scientific, 2020) p. 130. https://doi.org/10.1142/11593

23. F. Perey, B. Buck. A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32 (1962) 353. https://doi.org/10.1016/0029-5582(62)90345-0

24. G.E. Brown, J.H. Gunn, P. Gould. Effective mass in nuclei. Nucl. Phys. 46 (1963) 598. https://doi.org/10.1016/0029-5582(63)90631-X

25. S. Shlomo, V.M. Kolomietz. Hot nuclei. Rep. Prog. Phys. 68 (2005) 1. https://doi.org/10.1088/0034-4885/68/1/R01

26. V.M. Kolomietz, A.I. Sanzhur, S. Shlomo. Self-consistent mean-field approach to the statistical level density in spherical nuclei. Phys. Rev. C 97 (2018) 064302. https://doi.org/10.1103/PhysRevC.97.064302

27 C. Mondal et al. Interdependence of different symmetry energy elements. Phys. Rev. C 96 (2017) 021302(R). https://doi.org/10.1103/PhysRevC.96.021302

28. Tuhin Malik et al. Nucleon effective mass and its isovector splitting. Phys. Rev. C 98 (2018) 064316. https://doi.org/10.1103/PhysRevC.98.064316

29. J.S. Rowlinson, F.L. Swinton. The thermodynamics of liquid mixtures. In: Liquids and Liquid Mixtures (London: Butterworth Scientific, 1982) p. 86. https://www.elsevier.com/books/liquids-and-liquid-mixtures/rowlinson/978-0-408-24193-9

30. R.V. Poberezhnyuk et al. Quantum van der Waals and Walecka models of nuclear matter. Int. J. Mod. Phys. E 26 (2017) 1750061. https://doi.org/10.1142/S0218301317500616

31. D.H. Youngblood, H.L. Clark, Y.-W. Lui. Incompressibility of nuclear matter from the giant monopole resonance. Phys. Rev. Lett. 82 (1999) 691. https://doi.org/10.1103/PhysRevLett.82.691

32. G. Bonasera, M.R. Anders, S. Shlomo. Giant resonances in 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm, and 208Pb. Phys. Rev. C 98 (2018) 054316. https://doi.org/10.1103/PhysRevC.98.054316

33. H. Müller, B.D. Serot. Phase transitions in warm, asymmetric nuclear matter. Phys. Rev. C 52 (1995) 2072. https://doi.org/10.1103/PhysRevC.52.2072

34. M. Dutra et al. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85 (2012) 035201. https://doi.org/10.1103/PhysRevC.85.035201

35. B.K. Agrawal, S. Shlomo, V. Kim Au. Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72 (2005) 014310. https://doi.org/10.1103/PhysRevC.72.014310

36. L.G. Cao et al. From Brueckner approach to Skyrme-type energy density functional. Phys. Rev. C 73 (2006) 014313. https://doi.org/10.1103/PhysRevC.73.014313

37. A.W. Steiner et al. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411 (2005) 325. https://doi.org/10.1016/j.physrep.2005.02.004

38. M. Rashdan. A Skyrme parametrization based on nuclear matter BHF calculations. Mod. Phys. Lett. A 15 (2000) 1287. https://doi.org/10.1142/S0217732300001663

39. P.A.M. Guichon et al. Physical origin of density dependent forces of Skyrme type within the quark meson coupling model. Nucl. Phys. A 772 (2006) 1. https://doi.org/10.1016/j.nuclphysa.2006.04.002

40. M.A. Anisimov et al. Crossover to global critical phenomena in fluids. Physica A 188 (1992) 487. https://doi.org/10.1016/0378-4371(92)90329-O

41. F.J. Fernandez Velicia. New functional expansions for the Fermi-Dirac functions. Phys. Rev. A 30 (1984) 1194. https://doi.org/10.1103/PhysRevA.30.1194

42. E.C. Stoner. XXIV. The thermodynamic functions for a Fermi-Dirac gas. Phil. Mag. 28 (1939) 257. https://doi.org/10.1080/14786443908521182

43. A. Sommerfeld. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z. Phys. 47 (1928) 1. https://doi.org/10.1007/BF01391052