ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
The uptake and excretion rate of 137Cs from the silver Prussian carp (Carassius gibelio) at different feeding routine
O. V. Kashparova1,2,*, S. E. Levchuk2, Yu. V. Khomutinin2, P. M. Pavlenko2, M. O. Hrechaniuk2, V. O. Kashparov1,2
1 Center for Environmental Radioactivity, Norwegian University of Life Sciences, Ås, Norway
2 Ukrainian Institute of Agricultural Radiology, National University of Life and Environment Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author. E-mail address:
elena.kashparova@gmail.com
Abstract: Throughout 2016 - 2021, a series of experimental studies on 137Cs uptake and excretion rate constants for the silver Prussian carp (Carassius gibelio) were conducted in the Chornobyl exclusion zone (ChEZ) under natural conditions. To confirm the metabolic parameters of 137Cs in the silver Prussian carp under strictly controlled conditions at different feed amounts real supporting laboratory experiments have been conducted. The excretion rate of the 137Cs from the silver Prussian carp increased with increasing feed amount from 0.0068 ± 0.0003 day-1 to 0.0085 ± 0.0005 day-1 at water temperatures of 26 °C. The biological half-life of 137Cs activity concentration in fish can be reduced by 2 times by increasing fish growth using clean feeding. The excretion rate of the 137Cs from the silver Prussian carp agreed with data collected in natural conditions in the ChEZ during 2016 - 2020 at different water temperatures.
Keywords: 137Cs, Chornobyl, freshwater fish, radioactive contamination, excretion rate, depuration rate, the concentration factor.
References:1. Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience. Report of the Chernobyl Forum Expert Group ‘Environment’ (Vienna: IAEA, 2006). 180 p. https://www-pub.iaea.org/mtcd/publications/pdf/pub1239_web.pdf
2. Environmental Protection – the Concept and Use of Reference Animals and Plants. ICRP Publication 108. Ann. ICRP 38(4-6) (ICRP, 2008). https://www.icrp.org/publication.asp?id=ICRP%20Publication%20108
3. D. Gudkov et al. Dynamics of the Content and Distribution of the Main Dose Forming Radionuclides in Fishes of the Exclusion Zone of the Chornobyl NPS. Hydrobiological Journal 44(5) (2008) 87. https://doi.org/10.1615/HydrobJ.v44.i5.100
4. Yu. Khomutinin, V. Kashparov, A. Kuzmenko. Dependence of 137Cs and 90Sr uptake rates by fish on potassium and calcium in a freshwater reservoir. Radiation Biology. Radioecology 51(3) (2011) 374. (Rus)
5. A. Kaglyan et al. Radionuclides in native fish species of the Chornobyl exclusion zone. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 13(3) (2012) 306 (Rus) https://jnpae.kinr.kyiv.ua/13.3/Articles_PDF/jnpae-2012-13-0306-Kaglyan.pdf
6. M. Balonov et al. Harmonization of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chornobyl accident. Journal of Radiological Protection 38 (2018) 854. https://doi.org/10.1088/1361-6498/aabe34
7. T. Wada et al. Strong contrast of caesium radioactivity between marine and freshwater fish in Fukushima. Journal of Environmental Radioactivity 204 (2019) 132. https://doi.org/10.1016/j.jenvrad.2019.04.006
8. H.-C. Teien et al. Seasonal changes in uptake and depuration of 137Cs and 90Sr in silver Prussian carp (Carassius gibelio) and common rudd (Scardinius erythrophthalmus). Science of the Total Environment 786 (2021) 147280. https://doi.org/10.1016/j.scitotenv.2021.147280
9. P. Pavlenko et al. Effect of additional "clean" feeding on 90Sr and 137Cs content in Prussian carp (Carassius gibelio) in the Chornobyl exclusion zone. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 22(3) (2021) 272. (Ukr) https://doi.org/10.15407/jnpae2021.03.272
10. O. Kashparova et al. Clean feed as countermeasure to reduce the 137Cs and 90Sr levels in fish from contaminated lakes. Journal of Environmental Radioactivity (2022). (Submitted).
11. J.T. Smith. Modelling the dispersion of radionuclides following short duration releases to rivers Part 2. Uptake by fish. Science of the Total Environment 368 (2006) 502. https://doi.org/10.1016/j.scitotenv.2006.03.011
12. J.E. Pinder et al. Caesium accumulation by fish following acute input to lakes: a comparison of experimental and Chornobyl-impacted systems. Journal of Environmental Radioactivity 100 (2009) 4560. https://doi.org/10.1016/j.jenvrad.2009.03.004
13. N.A. Beresford et al. A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and caesium. Science of the Total Environment 463-464 (2013) 284. https://doi.org/10.1016/j.scitotenv.2013.06.013
14. M.E. Haque et al. Developing a food web-based transfer factor of radiocaesium for fish, whitespotted char (Salvelinus leucomaenis) in headwater streams. Journal of Environmental Radioactivity 172 (2017) 191. https://doi.org/10.1016/j.jenvrad.2017.02.020
15. M. Metian, S. Pouil, S.W. Fowler. Radiocesium accumulation in aquatic organisms: A global synthesis from an experimentalist's perspective. Journal of Environmental Radioactivity 198 (2019) 147. https://doi.org/10.1016/j.jenvrad.2018.11.013
16. O.V. Kashparova et al. Dynamics of the 137Cs excretion from Prussian carp (Carassius gibelio) at different water temperatures. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 20(4) (2019) 411. (Rus) https://doi.org/10.15407/jnpae2019.04.411
17. O.V. Kashparova et al. Dynamics of 137Cs uptake from water to Prussian carp (Carassius gibelio). Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 21(1) (2020) 64. (Rus) https://doi.org/10.15407/jnpae2020.01.064
18. O. Kashparova et al. The excretion of 137Cs from silver Prussian carp (Carassius gibelio) with different water temperature under nature conditions in the Chornobyl exclusion zone. Sci. Reports of the Nat. Univ. of Life and Environ. Sci. of Ukraine 6(88) (2020) 1. (Ukr) http://dx.doi.org/10.31548/dopovidi2020.06.003
19. O. Kashparova et al. Excretion of 137Cs from silver Prussian carp (Carassius gibelio) at 5 °C water temperature. Sci. Reports of the Nat. Univ. of Life and Environ. Sci. of Ukraine 4(86) (2020) 1. http://dx.doi.org/10.31548/dopovidi2020.04.008
20. J.T. Smith et al. The "Aquascope" simplified model for predicting 89,90Sr, 131I, and 134,137Cs in surface waters after a large-scale radioactive fallout. Health Physics 89(6) (2005) 628. https://doi.org/10.1097/01.HP.0000176797.66673.b7
21. J.T. Smith et al. Uptake and elimination of radiocaesium in fish and the "size effect". Journal of Environmental Radioactivity 62 (2002) 145. https://doi.org/10.1016/S0265-931X(01)00157-6
22. J.T. Smith et al. A review and test of predictive models for the bioaccumulation of radiostrontium in fish. Journal of Environmental Radioactivity 100 (2009) 950. https://doi.org/10.1016/j.jenvrad.2009.07.005
23. J. Garnier-Laplace, E. Vray, J.P. Baudin. A dynamic model for radionuclide transfer from water to freshwater fish. Water, Air, and Soil Pollution 98 (1997) 141. https://doi.org/10.1023/A:1026437628931
24. O. Ugedal et al. Effects of temperature and body size on radiocaesium excretion in brown trout, Salmo trutta. Freshwater Biology 28(2) (1992) 165. https://doi.org/10.1111/j.1365-2427.1992.tb00573.x
25. T. Forseth et al. Radiocaesium elimination in fish: variation among and within species. Journal of Applied Ecology 35 (1998) 847. https://doi.org/10.1111/j.1365-2664.1998.tb00003.x
26. O.I. Nasvit, N.I. Buyanov, M.I. Kuzmenko. Determination of kinetic parameters of the process of uptake of radionuclides by ecosystem components from the equilibrium values of the hydrobiology concentration factors. Hydrobiological Journal 26(1) (1990). (Rus)
27. A.I. Kryshev. Modelling the accumulation of 137Cs by age-structured fish population. Radioprotection - Colloques 37(C1) (2002) 627. https://doi.org/10.1051/radiopro/2002178
28. M. Sundbom et al. Long-term dynamics of Chornobyl 137Cs in freshwater fish: quantifying the effect of body size and trophic level. Journal of Applied Ecology 40 (2003) 228. https://doi.org/10.1046/j.1365-2664.2003.00795.x
29. O.E. Kaglyan et al. Method of cleaning silver carp (Carassius gibelio Bloch) from 137Cs radionuclide to hygienic radiation-safe levels. Patent UA No. 132603. Published on Sept. 25, 2018, bull. No. 18/2018. (Ukr)
30. K. Niizeki et al. Estimating biological half-lives of 137Cs in a cyprinid fish Tribolodon hakonensis by a one-compartment model considering growth dilution effect. Fisheries Science 86 (2020) 861. https://doi.org/10.1007/s12562-020-01452-y
31. B. Rosseland et al. Fish Ecotoxicology. The EMERGE Fish Sampling Manual for Live Fish (European mountain lake ecosystems: regionalisation, diagnostic & socio-economic evaluation, 2001) 7 p. http://www.mountain-lakes.org/emerge/www.mountain-lakes.org/emerge/methods/29.pdf
32. Standard Practice for High-Resolution Gamma-Ray Spectrometry of Water. ASTM D3649-06 (American Society for Testing and Materials, 2014) 8 p. https://www.astm.org/d3649-06r14.html
33. T. Cresswell et al. Aquatic live animal radiotracing studies for ecotoxicological applications: Addressing fundamental methodological deficiencies. Journal of Environmental Radioactivity 178-179 (2017) 453. https://doi.org/10.1016/j.jenvrad.2017.05.017
34. T.L. Yankovich et al. Whole-body to tissue concentration ratios for use in biota dose assessments for animals. Radiation and Environmental Biophysics 49 (2010) 549. https://doi.org/10.1007/s00411-010-0323-z
35. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. Technical Reports Series No. 472 (Vienna: IAEA, 2010). 194 p. https://www-pub.iaea.org/MTCD/Publications/PDF/trs472_web.pdf