Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2022, volume 23, issue 1, pages 39-46.
Section: Radiobiology and Radioecology.
Received: 26.07.2021; Accepted: 22.12.2021; Published online: 25.07.2022.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2022.01.039

Cytogenetic studies of Myodes glareolus from the natural populations of the Chornobyl Exclusion Zone in the remote post-accident period

N. M. Riabchenko*, O. O. Burdo, A. I. Lypska

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: nryabchenko@ukr.net

Abstract: The results of cytogenetic studies of bank voles (Myodes glareolus) carried out during 2009 - 2016 in the areas of the Chornobyl Exclusion Zone with different levels of radionuclide contamination are presented. In the remote period after the Chornobyl accident features of chromosomal instability in somatic cells of examined animals, manifested as elevated levels of bone marrow cells with micronuclei, are observed. Probably, they can be caused by transgenerational radiation-induced chromosomal instability and changes in the ecological characteristics of the population under the combined impact of chronic low-intensity radiation and negative environmental factors.

Keywords: Chornobyl Exclusion Zone, bank vole, incorporated radionuclides, cytogenetic markers.

References:

1. R.I. Goncharova, N.I. Ryabokon. Dynamics of cytogenetic injuries in natural populations of bank vole in the Republic of Belarus. Radiat. Prot. Dosimetry 62(1-2) (1995) 37. https://doi.org/10.1093/oxfordjournals.rpd.a082816

2. N.I. Ryabokon et al. Long-term development of the radionuclide exposure of murine rodent populations in Belarus after the Chernobyl accident. Radiat. Environ. Biophys. 44(3) (2005) 169. https://doi.org/10.1007/s00411-005-0015-2

3. V.A. Gaychenko. Radiobiological consequences of the Chornobyl accident in wildlife populations of the exclusion zone. Thesis Abstract of Doctor of Biol. Sci. (Kyiv, 1996) 49 p. (Ukr)

4. R.J. Baker et al. Small mammals from the most radioactive sites near the Chornobyl nuclear power plant. J. of Mammalogy 77(1) (1996) 155. https://doi.org/10.2307/1382717

5. B.E. Rodgers, R.J. Baker. Frequencies of micronuclei in bank voles from zone of high radiation at Chornobyl, Ukraine. ET&C 19 (2000) 1644. https://doi.org/10.1002/etc.5620190623

6. M. V. Zheltonozhska et al. New methodological approaches to the simultaneous measurement of the 90Sr and 137Cs activity in environmental samples. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 13(4) (2012) 403. (Rus) https://jnpae.kinr.kyiv.ua/13.4/Articles_PDF/jnpae-2012-13-0403-Zheltonozhska.pdf

7. V.A. Gaychenko. Features of formation of dose loads of some terrestrial animals. Naukovyy Visnyk of the National University of Life and Environmental Sciences of Ukraine 134 P. 1 (2009) 134. (Ukr)

8. K. Criswell et al. Use of acridine orange in: flow cytometric assessment of micronuclei induction. Mutat. Res. 414(1-3) (1998) 63. https://doi.org/10.1016/s1383-5718(98)00042-4

9. C. Riccardi, I. Nicoletti. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1(3) (2006) 1458. https://doi.org/10.1038/nprot.2006.238

10. On protection of animals from cruel treatment. Law of Ukraine No. 3447 of Feb. 21, 2006. Vidomosti Verkhovnoyi Rady Ukrayiny 27 (2006) 230. (Ukr) https://zakon.rada.gov.ua/laws/show/3447-15#Text

11. N.M. Ryabchenko, O.O. Burdo, A.I. Lypska. Estimation of genome instability in indicator species of small mammals from the Chornobyl NPP exclusion zone with different levels of radioactive contamination. In: XXVII Annual Sci. Conf. of the Institute for Nucl. Res. of the Nat. Acad. of Sci. of Ukraine, Kyiv, Sept. 21 - 25, 2020 (Kyiv: Institute for Nuclear Research, 2020) p. 276. (Ukr) https://kinr.kyiv.ua/Annual_Conferences/KINR2020/pdf/book%20of%20%20abstracts_2020.pdf

12. O.O. Burdo. Assessment of the state of murine rodents from the Chornobyl Exclusion Zone in the remote period according to a set of biological indicators. Thesis Abstract of Candidate of Biol. Sci. (Kyiv, 2021) 27 p. (Ukr)

13. R.I. Goncharova et al. Genomic Instability and Impaired DNA Repair as Factors in Human Hereditary and Somatic Pathology (Minsk: Belarusskaya Navuka, 2015) 282 p. (Rus)

14. A.G. Kudyasheva, L.A. Bashlykova, I.N. Gudkov. Long-term consequences of radiation accidents for mouse-like rodents in the Chornobyl Nuclear Power Plant exclusion zone. Vestnik of the Inst. of Biol. KOMI Sci. Center of the Ural Branch of the Rus. Acad. of Sci. 4(202) (2017) 32. (Rus) https://doi.org/10.31140/j.vestnikib.2017.4(202)5

15. R.I. Goncharova, I.I. Smolich. Genetic efficiency of low doses of ionizing radiation in chronic exposure of small mammals. Radiatsionnaya Biologiya. Radioekologiya 42(6) (2020) 654. (Rus)

16. S.A. Kostenko et al. Dynamics of cytogenetic parameters of root voles (Microtus oeconomus, Pall.) in the Chernobyl exclusion zone. Voprosy Radiatsionnoy Bezopasnosti (2013) 29. (Rus)

17. Ì.D. Bondarkov et al. Environmental radiation monitoring in the Chernobyl exclusion zone - history and results 25 years after. Health Physics 101(4) (2011) 442. https://doi.org/10.1097/HP.0b013e318229df28

18. O.O. Burdo et al. Peculiarities of Hematopoiesis in small rodents from the Chornobyl Exclusion Zone on the background of extreme environment. J. Environ. Radioact. 211 (2020) 105758. https://doi.org/10.1016/j.jenvrad.2018.06.023

19. R.I. Goncharova, N.I. Ryabokon. Biological effects in natural populations of small rodents in radiation-contaminated areas. Dynamics of the frequency of chromosome aberrations in a series of generations of the European red tree vole. Radiatsionnaya Biologiya. Radioekologiya 38(5) (1998) 746. (Rus)