ßäåðíà ô³çèêà òà åíåðãåòèêà
ISSN:
1818-331X (Print), 2074-0565 (Online) |
Home page | About |
Effect of neutron irradiation on the structure and strength of the SAV-1 aluminum alloy
Sh. A. Alikulov, S. A. Baytelesov, F. R. Kungurov*, D. P. Tadjibaev, D. D. Tojiboev
Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
*Corresponding author. E-mail address:
fkungurov@inp.uz
Abstract: The aluminum alloy SAV-1 was studied before and after inducing the radiation damage by means of neutrons with the following values of doses: 1016 - 1018 n/ñm2. The measurements were carried out by neutron diffraction methods to analyze the correlation of the structural state with the results of measurements of the strength of the sample obtained using a loading machine. It was found that the changes in the strength characteristics of aluminum alloys were associated with modifications at the grain boundary during irradiation of the samples. Thus, the obtained experimental data allows us to conclude that the SAV-1 alloy represents an interstitial solid solution, and the strength of the alloy changes nonlinearly depending on the radiation dose.
Keywords: aluminum alloy SAV-1, neutron irradiation, neutron scattering, microstructure, phase composition.
References:1. V.M. Lebedev et al. Structure of aluminum alloys irradiated with reactor neutrons. Physics of the Solid State 52 (2010) 996. https://doi.org/10.1134/S1063783410050239
2. E.F. Sturcken. Irradiation effects in magnesium and aluminum alloys. J. Nucl. Mater. 82 (1979) 39. https://doi.org/10.1016/0022-3115(79)90037-0
3. A. Hoffman et al. Effect of Nuclear Reactions on the Properties of Al-Mg-Si Alloys after Long-Time Exploitation in Research Reactors. Communication of the JINR (Dubna) No. P14-2004-174, 10 p. http://www1.jinr.ru/Preprints/2004/174(P14-2004-174).pdf
4. Yeon Soo Kim, Byoung Jin Cho, Dong-Seong Sohn. Thermal conductivity modeling of U-Mo/Al dispersion fuel. J. Nucl. Mater. 466 (2015) 576. https://doi.org/10.1016/j.jnucmat.2015.08.051
5. A. Munitz et al. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy. J. Nucl. Mater. 252 (1998) 79. https://doi.org/10.1016/S0022-3115(97)00293-6
6. V.S. Karasev. Plastic properties of SAV-1 alloy after long-time service in WWR-M reactor. Voprosy Atomnoj Nauki i Tekhniki. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie (49) (1989) 39. (Rus)
7. O.P. Maksimkin et al. Influence of neutron irradiation on intergranular corrosion and corrosion cracking of low-alloyed aluminum alloy SAV-1. Voprosy Atomnoj Nauki i Tekhniki. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie 2-97/72 (2011) 108. (Rus) https://vant.kipt.kharkov.ua/ARTICLE/VANT_2011_2/article_2011_2_108.pdf
8. A.M. Mavlyutov et al. Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al-Mg-Si nanostructured under severe plastic deformation. Physics of the Solid State 57(10) (2015) 2051. https://doi.org/10.1134/S1063783415100194
9. M. Murayama et al. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys. Materials Science and Engineering A 250(1) (1998) 127. https://doi.org/10.1016/S0921-5093(98)00548-6
10. Sh.A. Alikulov. Influence of neutron radiation on thermal and electrophysical properties of construction materials of the nuclear reactor. PhD thesis (Tashkent, 2020). http://ns.inp.uz/en/node/661
11. U.S. Salikhbaev et al. Effect of reactor irradiation on the microstructure and microhardness of aluminum alloys SAV-1 and AMG-2. Al’ternativnaâ ènergetika i èkologiâ 9(65) (2008) 105.
12. G.D. Bokuchava, Neutron RTOF Stress Diffractometer FSD at the IBR-2 pulsed reactor. Crystals 8(8) (2018) 318. http://doi.org/10.3390/cryst8080318
13. G.D. Bokuchava, I.V. Papushkin, Neutron Time-of-Flight Stress Diffractometry. J. of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 12(1) (2018) 97. https://doi.org/10.1134/S102745101801024X
14. G.S. Pawley. Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14 (1981) 357. https://doi.org/10.1107/S0021889881009618